CSE 473 Autumn 2018
Course Calendar

Subscribe to this calendar (Google, iCal, etc.)

 Show color key

September
MondayTuesdayWednesdayThursdayFriday
24 25 26
14:30-15:20 Lecture
SIG 134
Introduction, Agents.
1.1, 2.1-2.4.
Slides 1-up
27 28
14:30-15:20 Lecture
SIG 134
Problem Spaces and Blind Search.
3.1-3.4.
Slides 1-up

October
MondayTuesdayWednesdayThursdayFriday
01
14:30-15:20 Lecture
SIG 134
Heuristic Search
3.5-3.6.
Slides 1-up
02 03
14:30-15:20 Lecture
SIG 134
More on Heuristics
Slides 1-up
04 05
14:30-15:20 Lecture
SIG 134
Heuristics (cont).
23:59 Project 0 (Python tutorial) due
08
14:30-15:20 Lecture
SIG 134
Constraint Satisfaction Problems, Part 1.
6.1-6.3.
Slides 1-up
09 10
14:30-15:20 Lecture
SIG 134
Constraint Satisfaction Problems, Part 2.
6.4-6.5.
Slides 1-up
11 12
14:30-15:20 Lecture
SIG 134
Adversarial Search, Minimax, Alpha-beta Search.
5.1-5.3
Slides 1-up
15
14:30-15:20 Lecture
SIG 134
Adversarial Search (continued).
23:59 Project 1 (Search in PacMan) due
16 17
14:30-15:20 Lecture
SIG 134
Uncertainty, Expectimax Search.
5.4-5.5.
Slides 1-up
18 19
14:30-15:20 Lecture
SIG 134
Markov Decision Processes (MDPs).
17.1.
Slides 1-up
22
14:30-15:20 Lecture
SIG 134
Markov Decision Processes (continued).
23 24
14:30-15:20 Lecture
SIG 134
MDPs: Value Iteration.
17.2.
25 26
14:30-15:20 Lecture
SIG 134
MDPs: Policy Iteration.
17.3
Slides 1-up
23:59 Project 2 (Multiagent PacMan) due
29
14:30-15:20 Lecture
SIG 134
Reinforcement Learning.
21.1-21.2; also Sutton and Barto: Draft 2nd ed. pages 1-144.
Slides 1-up
30 31
14:30-15:20 Lecture
SIG 134
Reinforcement Learning (cont).
21.3, 21.4
01 02
14:30-15:20 Midterm exam

November
MondayTuesdayWednesdayThursdayFriday
05
14:30-15:20 Lecture
SIG 134
Reinforcement Learning (cont)
06 07
14:30-15:20 Lecture
SIG 134
Reinforcement Learning (cont) -- feature-based approximate Q-Learning.
Slides 1-up
08 09
14:30-15:20 Lecture
SIG 134
Probability Review.
13.1-13.3
Slides 1-up
23:59 Project 3 (Reinforcement Learning) due
12
Veteran's Day*
13 14
14:30-15:20 Lecture
SIG 134
Markov Models.
RN: Chapter 13, Sections 13.4-13.5.
Slides 1-up
15 16
14:30-15:20 Lecture
SIG 134
Hidden Markov Models.
15.3
Slides 1-up
19
14:30-15:20 Lecture
SIG 134
Particle Filters for HMMs.
15.5
20 21
14:30-15:20 Lecture
SIG 134
Perceptrons.
Slides 1-up
23:59 Project 4 (Ghostbusters) due
22
Thanksgiving
23
Fri. after Thanksgiving
26
14:30-15:20 Lecture
SIG 134
Bayes Nets
Slides 1-up
27 28
14:30-15:20 Lecture
SIG 134
D-Separation in Bayes Nets; [NOTE: The P5 deadline is moved to Thursday, Nov. 29.]
Slides 1-up
23:59 Project 5 (Pattern Classification) due
29 30
14:30-15:20 Lecture
SIG 134
(a) Robotics Laws; (b) Multilevel Perceptrons
(a) Slides 1-up (b) Slides 1-up ,(c) optional reading on Asimov Laws.

December
MondayTuesdayWednesdayThursdayFriday
03
14:30-15:20 Lecture
SIG 134
Advanced Applications: NLP
22.1-22.4.
Slides 1-up
04 05
14:30-15:20 Lecture
SIG 134
Review
23:59 Homework 6 (Written Exercises) due
06 07
14:30-15:20 Lecture
SIG 134
Course wrapup.
10 11
14:30-16:20 Final exam
12 13 14