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Topics from 30,000’

= We' re done with Part | Search and Planning!

= Part Il: Probabilistic Reasoning
Diagnosis @? );
Speech recognition

Tracking objects

Robot mapping

Genetics

Error correcting codes

= ... lots more!

= Part lll: Machine Learning

Outline

Uncertainty

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
= Product Rule, Chain Rule, Bayes’ Rule
= Inference
= Independence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge
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P(w)

wn |06 Probability

i ' / Distribution
rain 0.1
fog 0.3
meteor | 0.0

Joint Distributions

= Ajoint distribution over a set of random variables: X7, X»,... X5
specifies a probability for each assignment (or outcome):

P(X1=x1,X2=a2,...Xn = an)

P(T,W)
P(x1,22,...7n)
T w P
= Must obey: P(zl,ZQ, B »In) >0 hot | sun 0.4
hot | rain 0.1
Z P(z1,29,...2n) =1 cold | sun | 0.2
(z1,22,...Tn) cold | rain | 0.3

= Size of joint distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!




Probabilistic Models

Events

A probabilistic model is a joint distribution Distribution over TW

over a set of random variables T w P

Probabilistic models: hot su‘n 04
= (Random) variables with domains hot | rain 01
= Joint distributions: say whether assignments cold sun 0.2

(called “outcomes”) are likely
= Normalized: sum to 1.0 cold | rain | 03
= Ideally: only certain variables directly interact

Constraint over TW

Constraint satisfaction problems:
= Variables with domains

= Constraints: state whether are possible | Ot | sun T
= Ideally: only certain variables directly interact hot rain F
cold sun F
cold rain T

= Anevent is a set E of outcomes

P(E) = > P(zy...zn)
(z1...zn)EE
= From a joint distribution, we can P(T, W)
calculate the probability of any event = w 5
= Probability that it’s hot AND sunny? hot sun 0.4

hot rain 0.1

- o 5
= Probability that it’s hot? cold sun 02

cold rain 0.3

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

Quiz: Events

Marginal Distributions

= P(+x, +y) ? P(X,Y)
X Y P
+X +y 0.2
" P(+x)? + | -y | 03
-X +y 0.4
-X -y 0.1

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

= P(-yOR +x) ?

P(T)
P(T,W)
= 0 > > hot 0.5
hot sun 0.4 P(t) = z P(t,s) M
hot rain 0.1 s P(W)

cold sun 0.2

——

cold rain 0.3

P(s) =Y P(t,s)
t

P(Xy=x1) =) P(X1=m1,Xp=13)
>y

Quiz: Marginal Distributions

Conditional Probabilities

P(X,Y)
X Y P >
+X +y 0.2 P(z) = ZP(w,y)
+X -y 03 v
X +y 0.4
X -y 0.1 —

P(y) =3 P(z,y)

= Asimple relation between joint and marginal probabilities
= |n fact, this is taken as the definition of a conditional probability

P(a,b)

P(alb) = P}S‘(’I’);’) >

P(a)

P(T, W)

P(WW=sT=c¢c 0.2
P(VV=S|T=C)=W:ﬁ

hot rain 0.1

=0.4

=PW=sT=c)+ PW=nrT=c)
=02403 =05

cold sun 0.2

cold rain 0.3




Quiz: Conditional Probabilities

Conditional Distributions

= P(+x | +y)?

= Conditional distributions are probability distributions over some variables
given fixed values of others

P(X,Y)
X Y p Conditional Distributions Joint Distribution
[ P(W|T = hot)
+X +y 0.2
= P(x | #)? asilp)
+X -y 03 T w P
X +y 0.4 ~ hot sun 0.4
-X -y 0.1 :g i hot rain 0.1
E: cold sun 0.2
= Py | +x)? cold | rain | 03
Conditional Distribs - The Slow Way... Probabilistic Inference
= Probabilistic inference =
PW=sl=0c)= “compute a desired probability from other known
_ P(W =381 =c) probabilities (e.g. conditional from joint)”
P(T,W) TPW=sT=c)+PW=rT=c)
T w P “02 + 0304 P(W|T =c¢) = We generally compute conditional probabilities
hot sun 0.4 R = P(on time | no reported accidents) = 0.90
hot rain 0.1 S = These represent the agent’s beliefs given the evidence
cold sun 0.2
cold | rain 03 PW=rT'=c)= T =0 = Probabilities change with new evidence:
_ PW=rT=c) = P(on time | no accidents, 5 a.m.) = 0.95
’)(:)"3= sT=c)+P(W=nT=c) = P(ontime | no accidents, 5 a.m., raining) = 0.80
=02 To03= 0.6 = Observing new evidence causes beliefs to be updated
Inference by Enumeration Inference by Enumeration
* Works fine with
= General case: " Wewant: multiple query

Evidence variables:  F1...Ep =e1...e; \‘ X1, Xo,...0 X,

variables, too

* variable: L

query varllabla Q All variables P(Q‘el .o .ek)
Hidden variables: Hy...Hr

Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize

entries consistent
with the evidence

of Query and evidence

P(Quer...ep) = > P(Qh1.. hrer...ep)
hy...h —_—

X0 X X

1
><_
A

Z:ZP(Q161“‘€I¢)
q

P(Qler-ex) = SP(Quer-ex)

. p(W)? S T w P
summer | hot sun 0.30

summer | hot rain | 0.05

summer | cold sun 0.10

i ?
* P(W | winter): summer | cold rain | 0.05

winter hot sun 0.10

winter hot rain | 0.05

winter | cold sun 0.15

winter | cold rain | 0.20

= P(W | winter, hot)?




Inference by Enumeration

The Product Rule

= Computational problems?
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(x,y) <=

«~ Bl

n

P(z,y)
P(y)

P(zly) =

The Product Rule

The Chain Rule

P(y)P(xly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D) wooP D w
R 3 wet | sun |01 wet | sun

m dry sun | 0.9 <:\ dry sun
4 wet | rain

n
wain wet | rain | 07

dry rain 0.3 dry rain

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(x1,29,23) = P(x1)P(xp|z1) P(a3|ey, x2)

P(z1,22,. .. an) = [[ P(xiley .. wio1)
i

Independence

Example: Independence?

= Two variables are independentin a joint distribution if:
P(X,Y) = P(X)P(Y)
XY
Va,y P(z,y) = P(2)P(y)

= Says the joint distribution factors into a product of two simple ones
® Usually variables aren’t independent!

@

= Canuse independence as a modeling assumption
. can be a simplifying i
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

= Independence s like something from CSPs: what?

23]

P(T)

T P

hot 0.5
P(T, W) cold | 05 Py(T,W) = P(T)P(W)
T w P T w P
hot | sun | 0.4 hot | sun | 03
hot rain 0.1 hot rain 0.2
cold | sun | 02 cold | sun | 03
cold | rain | 03 PW) cold | rain | 0.2

w P

sn | 06

rain 0.4




Example: Independence

Conditional Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xn)

—

P(X1,X2,...Xn)

Conditional Independence

Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:
® P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
® P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
* P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
® One can be derived from the other easily

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z X1Y|Z

if and only if:
Va,y,z 1 P(x,y|2) = P(z[2) P(y|2)
or, equivalently, if and only if

Vz,y,2 1 P(alz,y) = P(z]z)

Conditional Independence

Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining

= What about this domain:

= Fire
= Smoke
= Alarm




Bayes Rule

Pacman — Sonar (P4)

74 C5188 Pacman. . - - o -
_

SCORE: -9

[Demo: Pacman — Sonar — No Beliefs(L14D1)]

Video of Demo Pacman — Sonar (no beliefs)

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y) = P(ylz)P(z)

= Dividing, we get:

P(y|z)
P(y)

= Why is this at all helpful?

P(aly) = P(x)

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

= |n the running for most important Al equation!

That’s my rule!

Inference with Bayes’ Rule

Ghostbusters Sensor Model

= Example: Diagnostic probability from causal probability:
P(causeleffect) — P(eﬂect|caU§e)P(cause)
P(effect)
= Example:
= M: meningitis, S: stiff neck

P(+m) = 0.0001 el
0 ) — xample
P(+s|+m)=0.38 givens
P(+s| —m) =0.01
Plim| 1 s) = DErsIEmPGm) P(+s| +m)P(+m) 0.8 x 0.0001
1| +5) = = =
’ P(+s) P(+s| + m)P(+m) + P(+s] —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0079

= Note: you should still get stiff necks checked out! Why?

Values of Pacman’s Sonar Readings

| P(rea'l 3) ‘ P(orange | 3) ‘ P(yeilow | 3) ‘ P(green | 3)

| 0.05 \ 015 \ 05 \ 03

Real Distance = 3




Ghostbusters, Revisited

Video of Demo Gh

= |et’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R = reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1)) =0.1

= \We can calculate the posterior distribution
P(G|r) over ghost locations given a reading

ing B ' rule:
UsIng Bayes TUIE: poir) x P(rig)Po) =

[Demo: Ghostbuster = with probability (L12D2) ]

sters with Probability

Probability Recap

= Conditional probability Plaly) = P(z,y)
P(y)
= Product rule P(z,y) = P(z|ly)P(y)
= Chain rule P(X1,X2,...Xn) = P(X1)P(Xo|X1)P(X3/X1,X2)...
= [ P(XilX1,. . Xio1)

i=1

= Bayes rule P(zly) = PP(,?‘Q;) P(z)
y

= X, Yindependent if and only if:  Vz,y: P(z,y) = P(z)P(y)

= X and Y are conditionally independent givenz: X ALY|Z
if and only if Va,y,2 : Pa,ylz) = P(al2) P(yl2)




