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Solving MDPs

 Value Iteration
 Policy Iteration

 Reinforcement Learning



Policy Evaluation



Fixed Policies

 Expectimax trees max over all actions to compute the optimal values

 If we fixed some policy π (s), then the tree would be simpler – only one action per state
 … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what π says to do



Utilities for a Fixed Policy

 Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

 Define the utility of a state s, under a fixed policy π:
Vπ (s) = expected total discounted rewards starting in s and following π

 Recursive relation (one-step look-ahead / Bellman equation):
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Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation

 How do we calculate the V’s for a fixed policy π?

 Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

 Efficiency: O(S2) per iteration

 Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)
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Policy Iteration

 Alternative approach for optimal values:
 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence

 Step 2: Policy improvement: update policy using one-step look-ahead with resulting 
converged (but not optimal!) utilities as future values

 Repeat steps until policy converges

 This is policy iteration
 It’s still optimal! Can converge (much) faster under some conditions



Comparison

 Both value iteration and policy iteration compute the same thing (all optimal values)

 In value iteration:
 Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

 In policy iteration:
 We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
 After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 The new policy will be better (or we’re done)

 Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

 So you want to….
 Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
 Turn your values into a policy: use policy extraction (one-step lookahead)

 These all look the same!
 They basically are – they are all variations of Bellman updates
 They all use one-step lookahead expectimax fragments
 They differ only in whether we plug in a fixed policy or max over actions



Manipulator Control

Arm with two joints (workspace)                                                        Configuration space
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Manipulator Control Path
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Double Bandits



Double-Bandit MDP

 Actions: Blue, Red
 States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount
100 time steps

Both states have 
the same value



Offline Planning

 Solving MDPs is offline planning
 You determine all quantities through computation
 You need to know the details of the MDP
 You do not actually play the game!
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Let’s Play!
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Online Planning

 Rules changed!  Red’s win chance is different.
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Let’s Play!
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What Just Happened?

 That wasn’t planning, it was learning!
 Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
 You needed to actually act to figure it out

 Important ideas in reinforcement learning that came up
 Exploration: you have to try unknown actions to get information
 Exploitation: eventually, you have to use what you know
 Regret: even if you learn intelligently, you make mistakes
 Sampling: because of chance, you have to try things repeatedly
 Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!


