Reinforcement Learning Il

Steve Tanimoto

slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkel

Reinforcement Learning

/e still assume an MDP:

- Asetofstatess €S

- A set of actions (per state) A
- A model T(s,a,s’)

- Areward function R(s,a,s’)

ill looking for a policy 7t(s)

ew twist: don’t know T or R, so must try out actions

g idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy © Policy evaluation
Jnknown MDP: Model-Based Unknown MDP: Model-Free
al Technique Goal Technique
\pute V*, Q*, n* VI/PIl on approx. MDP Compute V*, Q*, * Q-learning
uate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

J N

Model-Free Learning

Nlodel-free (temporal difference) learning

» Experience world through episodes

(s,a,r,s",a ,r',s" a" r" s"...)

' Update estimates each transition (S, a,r, S’)

' Over time, updates will mimic Bellman updates

Q-Learning

/e’d like to do Q-value updates to each Q-state:
Qt1(s,0) ¢ S T(s,0,8) | R(s,0,8) + 7 max Qu(s',)
/ a

S
' But can’t compute this update without knowing T, R

1stead, compute average as we go
' Receive a sample transition (s,a,r,s’)
' This sample suggests

Q(s,a) ~ v+ ymaxQ(s, a')

' But we want to average over results from (s,a) (Why?)
' So keep a running average

Qs,0) — (1~ a)Q(s,0) + (@) |1 + 7 MaxQ(s',)

Q-Learning Properties

mazing result: Q-learning converges to optimal policy -- even
‘'you're acting suboptimally!

his is called off-policy learning

aveats:

' You have to explore enough

' You have to eventually make the learning rate
small enough

' .. but not decrease it too quickly
' Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff gri

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

everal schemes for forcing exploration

* Simplest: random actions (e-greedy)
" Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

" Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge gri
[Demo: Q-learning — epsilon-greedy -- crawle

20 of Demo Q-learning — Manual Exploration — Bridge ¢

Video of Demo Q-learning — Epsilon-Greedy — Crawler

V i

Exploration Functions

hen to explore?
Random actions: explore a fixed amount

Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

ploration function

Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <a R(s,a,s") +ymaxQ(s',a’)
Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s,a’), N(s',a"))

Note: this propagates the “bonus” back to states that lead to unknown states as

[Demo: exploration — Q-learning — crawler — exploration functio

leo of Demo Q-learning — Exploration Function — Craw

Regret

en if you learn the optimal policy,
u still make mistakes along the way

gret is @ measure of your total
istake cost: the difference between
ur (expected) rewards, including
uthful suboptimality, and optimal
xpected) rewards

inimizing regret goes beyond
arning to be optimal — it requires
timally learning to be optimal

ample: random exploration and
ploration functions both end up
ytimal, but random exploration has
gher regret

Approximate Q-Learning

Generalizing Across States

3sic Q-Learning keeps a table of all g-values

realistic situations, we cannot possibly learn
yout every single state!

Too many states to visit them all in training

Too many states to hold the g-tables in memory

stead, we want to generalize:
Learn about some small number of training states from
experience
Generalize that experience to new, similar situations

This is a fundamental idea in machine learning, and we’ll
see it over and over again

Example: Pacman

et’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
hat this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch 3
[Demo: Q-learning — pacman — tiny — silent trai
[Demo: Q-learning — pacman — tricky — watch ¢

Jeo of Demo Q-Learning Pacman — Tiny — Watch

eo of Demo Q-Learning Pacman — Tiny — Silent Tr

eo of Demo Q-Learning Pacman — Tricky — Watch

Feature-Based Representations

olution: describe a state using a vector of

atures (properties)

' Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

' Example features:

= Distance to closest ghost

= Distance to closest dot

= Number of ghosts

= 1/ (dist to dot)?

= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

' Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

sing a feature representation, we can write a g function (or value function) for an
ate using a few weights:

V(s) =w1f1(8) +wafo(s) + ...+ wnfn(s)
Q(87 CL) — w1f1(37 a,)—l—waQ(S, CL)"— . °+wnfn(87 CL)
dvantage: our experience is summed up in a few powerful numbers

isadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Q(s,0) = wafi(s,@)Fwafols,a)+. Hunfals,a) |

-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = ['r' + v max Q(s, a')} — Q(s,a)
Q(s,a) — Q(s,a) + « [difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Qs

1tuitive interpretation:
1 Adjust weights of active features

' E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

ormal justification: online least squares

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgser(s,a)

A -
fpor(s, NORTH) = 0.5
a = NORTH S/
r = —500
fasT(s, NORTH) = 1.0
J _ .
Qs NORTH) = +1 Q) =0

r4+~ymaxQ(s’,a') = —-5004+0
CL,
4.0 —501(0.5
difference = —501) WDOT ikl |
WAEST —1.0 —I— 0 [—501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsr(s,a) ivemo:ap

learning pacma

eo of Demo Approximate Q-Learning -- Pacn

Q-Learning and Least Squares

Linear Approximation: Regression™

407

f1(x)

Prediction: Prediction:
y = wg + w1 f1(x) ¥, = wo + wi f1(x) + wafs

Optimization: Least Squares™

2
total error =3 (y; — 4;)% =% (yi — Zwkfk(xi))
- k
(2

1

. Error or “residual”
Observation Y

Prediction fj

° f1(x) .

Minimizing Error*

zine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(a:))
k

0 error(w) B

Owm

(y - ZWfk(fE)) fm(x)
k

Wi — Wm + « (y - Zkak(w)) fm(x)
k

roximate g update explained:

Wm — Wm + o {7" Y max Q(s',d) — Q(s,a)} (s, a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help?

Policy Search

Policy Search

‘oblem: often the feature-based policies that work well (win games, maximize
ilities) aren’t the ones that approximate V / Q best

E.g. your value functions from project 2 were probably horrible estimates of future rewards, but
still produced good decisions

Q-learning’s priority: get Q-values close (modeling)
Action selection priority: get ordering of Q-values right (prediction)
We'll see this distinction between modeling and prediction again later in the course

lution: learn policies that maximize rewards, not the values that predict them

olicy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbi
1 feature weights

Policy Search

mplest policy search:
~ Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than be

roblems:

- How do we tell the policy got better?

" Need to run many sample episodes!

If there are a lot of features, this can be impractical

etter methods exploit lookahead structure, sample wisely, change
ultiple parameters...

Policy Search

[Video: HE

Conclusion

e’re done with Part |: Search and Planning!

e’ve seen how Al methods can solve
oblems in:
Search
Constraint Satisfaction Problems
Games
Markov Decision Problems
Reinforcement Learning

