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Outline

 Search Problems

 Uninformed Search Methods
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods
 Best-First, Greedy Search
 A*



Agent vs. Environment

 An agent is an entity that 
perceives and acts.

 A rational agent selects 
actions that maximize its 
utility function.  

 Characteristics of the 
percepts, environment,
and action space dictate 
techniques for selecting 
rational actions.
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Types of Agents

 Reflex

 Goal oriented

 Utility-based

4



Goal Based Agents

 Plan ahead
 Ask “what if”

 Decisions based on 
(hypothesized) 
consequences of actions

 Must have a model of how 
the world evolves in 
response to actions

 Act on how the world 
WOULD BE



Types of Environments

 Fully observable vs. partially observable

 Single agent vs. multiagent

 Deterministic vs. stochastic

 Episodic vs. sequential

 Discrete vs. continuous



Search thru a 

 Set of states

 Operators [and costs]

 Start state

 Goal state [test]

• Path: start           a state satisfying goal test

[May require shortest path]

[Sometimes just need a state that passes test]

• Input:

• Output:

Problem Space (aka State Space) Problem Space (aka State Space) 



Example: Traveling in Romania

 State space:
 Cities

 Successor function:
 Roads: Go to adjacent city 

with cost = distance

 Start state:
 Arad

 Goal test:
 Is state == Bucharest?

 Solution?



Example: Simplified Pac-Man

 Input:
 A state space

 A successor function

 A start state 

 A goal test

 Output:

“N”, 1.0

“E”, 1.0



State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food configurations: 230

 Ghost1 positions: 12

 Ghost 2 positions: 11

10 x 12 = 120

up, down, left, right

230

12

11

120 x 4 x 230 x 12 x 11 = 6.8 x 1013



State Space Graphs

 State space graph:

 Each node is a state

 The successor function is 
represented by arcs

 Edges may be labeled with 
costs

 In a search graph, each state 
occurs only once!

 We can rarely build this graph 
in memory (so we don’t)
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Search Trees

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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both on 
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as little as 
possible.

Each NODE in 
in the search 
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the state 
space graph.
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State Space Graphs vs. Search Trees
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Consider this 4-state 
graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree 
(from S)?



Tree Search



Search Example: Romania



Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)
 Maintain a fringe of partial plans under 

consideration
 Try to expand as few tree nodes as possible



General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?



Tree Search Example
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Depth-First Search



Depth-First Search

Strategy: expand a 
deepest node first

Implementation: Fringe is 
a LIFO stack S
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Depth-First Search
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Strategy: expand a 
deepest node first

Implementation: Fringe is 
a LIFO stack



Search Algorithm Properties



Search Algorithm Properties

 Complete: Guaranteed to find a solution if one exists?
 Optimal: Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

 Cartoon of search tree:
 b is the branching factor
 m is the maximum depth
 solutions at various depths

 Number of nodes in entire tree?
 1 + b + b2 + …. bm = O(bm)

…
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Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes does DFS expand?
 Some left prefix of the tree.
 Could process the whole tree!
 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent cycles 

 Is it optimal?
 No, it finds the “leftmost” solution, regardless of 

depth or cost



Breadth-First Search



Breadth-First Search
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Strategy: expand a 
shallowest node first

Implementation: Fringe 
is a FIFO queue



Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution
 Let depth of shallowest solution be d 
 Search takes time O(bd)

 How much space does the fringe take?
 Has roughly the last tier, so O(bd)

 Is it complete?
 d must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes



DFS vs BFS

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

N unless
finite

N O(bm) O(bm)

Y Y O(bd) O(bd)



Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in 160 sec   …  3 min



Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  

2. If “1” failed, do a DFS which only searches paths 
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

…
b



BFS vs. Iterative Deepening

 For b = 10, d = 5:

 BFS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 
111,111

 IDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 
123,456

 Overhead = (123,456 - 111,111) / 111,111 = 11%

 Memory BFS: 100,000;     IDS: 50 32



Costs on Actions

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path.
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Uniform Cost Search
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Uniform Cost Search
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…

Uniform Cost Search (UCS) 
Properties

 What nodes does UCS expand?

 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least ε , then the “effective 
depth” is roughly C*/ε

 Takes time O(bC*/ε) (exponential in effective depth)

 How much space does the fringe take?

 Has roughly the last tier, so O(bC*/ε)

 Is it complete?

 Assuming best solution has a finite cost and minimum arc cost is 
positive, yes!

 Is it optimal?

 Yes!  

b

C*/ε
“tiers” C ≤ 3

C ≤ 2

C ≤ 1



Uniform Cost Search

 Strategy: expand lowest 
path cost

 The good: UCS is 
complete and optimal!

 The bad:
 Explores options in every 

“direction”
 No information about goal 

location Start Goal

…

c  3

c  2

c  1



Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y* Y O(bC*/ε) O(bC*/ε)

…
b

C*/ε tiers



Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one



The One Queue

 All these search algorithms 
are the same except for 
fringe strategies
 Conceptually, all fringes are 

priority queues (i.e. collections 
of nodes with attached 
priorities)

 Practically, for DFS and BFS, 
you can avoid the log(n) 
overhead from an actual 
priority queue, by using stacks 
and queues

 Can even code one 
implementation that takes a 
variable queuing object



To Do:

 Look at the course website:
 http://http://courses.cs.washington.edu/courses/cse473/18au/

 Do the readings (Ch 3)

 Do Project 0, especially if new to Python

 Start Project 1.


