CSE 473: Artificial Intelligence

Autumn 2018

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

= A* Search
= Heuristic Design

= Graph search

Recap: Search

= Search problem:
» States (configurations of the world)

= Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

» Start state and goal test

= Search tree:
* Nodes: represent plans for reaching states
* Plans have costs (sum of action costs)

= Search Algorithm:
» Systematically builds a search tree
» Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Action: Flip over the
top n pancakes

==

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*7
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.5.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,. We show that f(n)=(5n+35)/3, and that f(n)= 17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=gnh)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Action: flip top

A{" Path to reach goal:
Flip four, flip three

' / l Total cost: 7

J

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

Pl h(x)
I |

4 —— e

. 3 —— 0 —
-

— \/3L_—

! 4 — ~_

What is a Heuristic?

= An estimate of how close a state is to a goal
» Designed for a particular search problem

» Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Example: Heuristic Functio

Straight=line distance

] Oradea to Bucharest
Neamt Arad 366
I 87 Bucharest 0
Craiova 160
M) lasi Dobreta 242
Eforie 161
e Fagaras 178
Glurgiu 77
M Vaslul Hirsova 151
Iasi 226
e Timisoara - Rimnicu Vilcea Lugo) 244
142 Mehadia 241
1 Pitest| 211 Neamt 234
] Lugoj
- Oradea 3180
70 98 Pitesti 08
10 85] ™) Hirsovi Ri icu Vilces ¢
7 " 86 Sibiu 253
y 120 198 Bucharest Timisoara 329
Dobreta [90 — Urziceni 80
— Crailova Eforie Vaslui |
] Giurgiu Zerind

Greedy Search

Best First (Greedy)

= Strategy: expand a node
that you think is closest to
a goal state
* Heuristic: estimate of

distance to nearest goal for
each state

= A common case:

» Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS

= Expand the node that seems =
closest... :

Arad

Sﬁﬂu “HIIEIIIE" 1"!!!!!"’

329 374

366 380 193
253 0

= WWhat can go wrong?

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost
g(n)
= Greedy ordgrs by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n) h=0

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/

= No: only stop when we dequeue a goal

Is A* Optimal?

N

@- B

= What went wrong?
» Actual bad goal cost < estimated good path cost

= We need estimates to be less than or equal to
actual costs!

Admissible Heuristics

= A heuristic / is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

= Examples:
4 —

= Coming up with admissible heuristics is most of
what's involved in using A* in practice.

Optimality of A* Tree Search

Assume:
" Aisan optimal goal node
" Bisasuboptimal goal node

= his admissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded
before B

1. f(n) is less or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost
g(A) Admissibility of h

g(A) = f(4) h=0atagoal

Optimality of A* Tree Search

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded
before B

1. f(n) is less or equal to f(A)
2. f(A)is less than f(B)

g(A) < ¢(B) B is suboptimal
f(A) < f(B) h =0 at a goal

Optimality of A* Tree Search

Proof:

Imagine B is on the fringe
Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded
before B

1. f(n) is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands before B

All ancestors of A expand
before B

A expands before B
A* search is optimal

UCS vs A* Contours

= Uniform-cost expanded
In all directions
Goal

= A* expands mainly
toward the goal, but

hedges its bets to
ensure optimality @Goal

Which Algorithm?

= Uniform cost search (UCS):

Which Algorithm?

= A* Manhattan Heuristic:

Which Algorithm?

= Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= QOften, admissible heuristics are solutions to relaxed
problems, where new actions are available

= |pnadmissible heuristics are often useful too

Creating Heuristics

7 2 4 l 2
8-puzzle: 5 6 34| S
8 3 | 6 7 8

Start State Goal State

= \What are the states?
* How many states?
= \What are the actions?

= \What states can | reach from the start state?
= \What should the costs be?

8 Puzzle |

= Heuristic: Number of
tiles misplaced

= h(start) = 8

= |s it admissible?

6

4 5

S 3

6

7 8

Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps
UCS [112 6,300 |3.6 x 10°
TILES |13 39 227

8 Puzzle Il

= \What if we had an easier 8-
puzzle where any tile could
slide any direction at any
time, ignoring other tiles?

= Total Manhattan distance
» h(start)= 3+1+2+ ...

= Admissible?

l 2

4 5

6

7 8

7 2 4

5 6

8 3 l
Start State

Goal State

=18 Average nodes expanded when
optimal path has length...
...4 steps |...8 steps |...12 steps
TILES 13 39 227
MANHATTAN | 12 25 73

8 Puzzle Il

= How about using the actual cost as a
heuristic?
= Would it be admissible?
* \Would we save on nodes expanded?

* What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance

= Dominance: h, 2 h, if

Vn . hqg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact

A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning
_anguage analysis

Machine translation

Speech recognition

Tree Search: Extra Work!

* Failure to detect repeated states can cause
exponentially more work. \Why?

A A A @
. ‘v
S o B® B®
! !
C = C® Co cC® CO®o

Graph Search

* |n BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

PN |
b/m h r q
I@h /\f
a r
®O [
p q f q C G
AN ;
q C G

|
a

o

Graph Search

» |dea: never expand a state twice

= How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never
been expanded before

= [f not new, skip it, if new add to closed set

= Hint: in python, store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

State space graph

A* Graph Search Gone Wrong

Search tree

S (0+2)

A/\.
A (1+4) B (1+1)

l l

C (2+1) C (3+1)

l i

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual
costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for
each arc

h(A) —h(C) < cost(A to C)
= Consequences of consistency:
= The f value along a path never decreases
h(A) < cost(A to C) + h(C)
f(A) = g(A) + h(A) < g(A) + cost(A to C) + h(C) = f(C)

= A* graph search is optimal

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Nodes are popped with non-decreasing f-
scores: for all n, n” with n” popped after n:
f(n’) 2 f(n)

= Proof by induction: (1) always pop the lowest f-
score from the fringe, (2) all new nodes have
larger (or equal) scores, (3) add them to the
fringe, (4) repeat!

= For every state s, nodes that reach s
optimally are expanded before nodes that
reach s sub-optimally

= Result: A* graph search is optimal

Optimality

= Tree search:

= A* optimal if heuristic is admissible (and non-negative)
» UCS is a special case (h = 0)

= Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

* In general, natural admissible heuristics tend to
be consistent, especially if from relaxed problems

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible / consistent
heuristics

» Heuristic design is key: often use relaxed
problems

