CSE 473: Artificial Intelligence

Autumn 2018

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from : Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

A* Search

- Heuristic Design
- Graph search

Recap: Search

Search problem:

- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

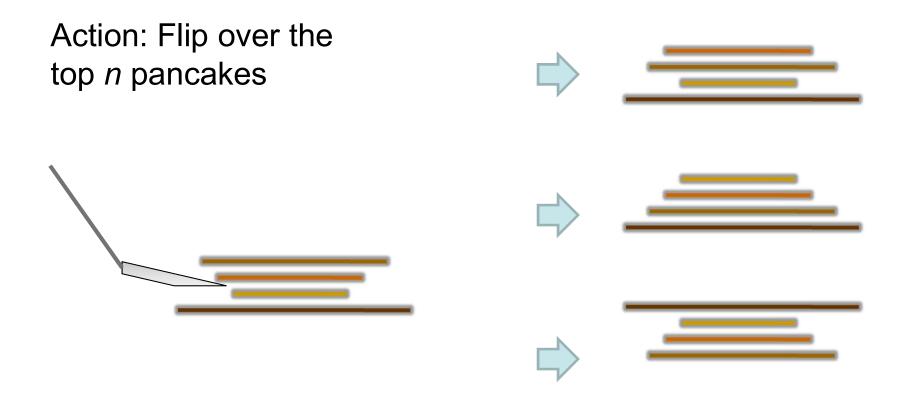
Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem



Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*[†]

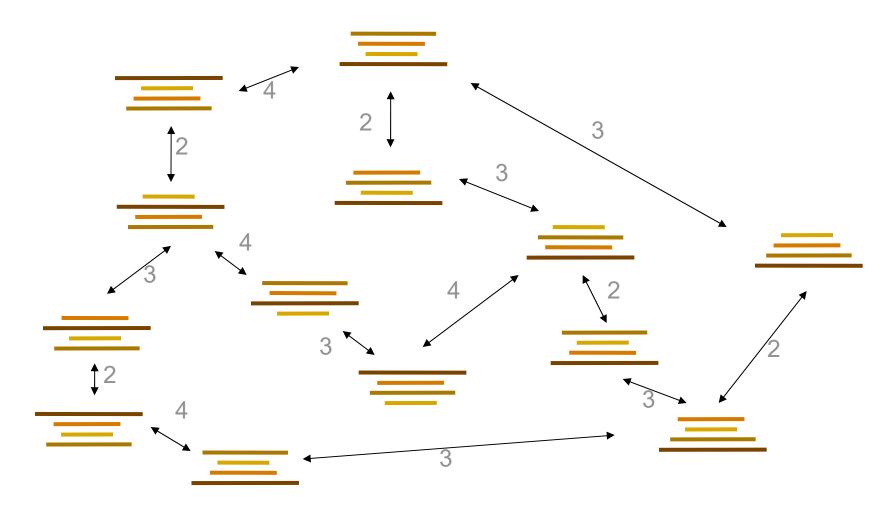
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

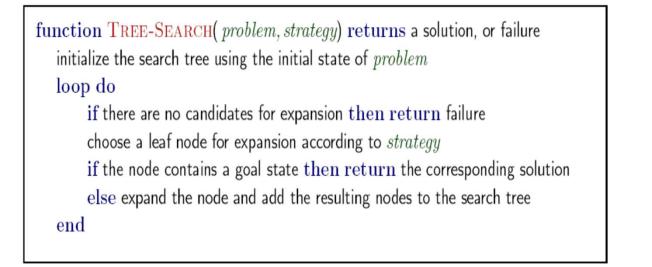
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

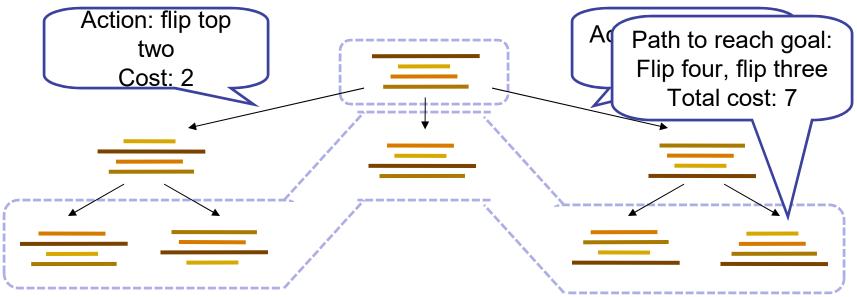
Example: Pancake Problem

State space graph with costs as weights



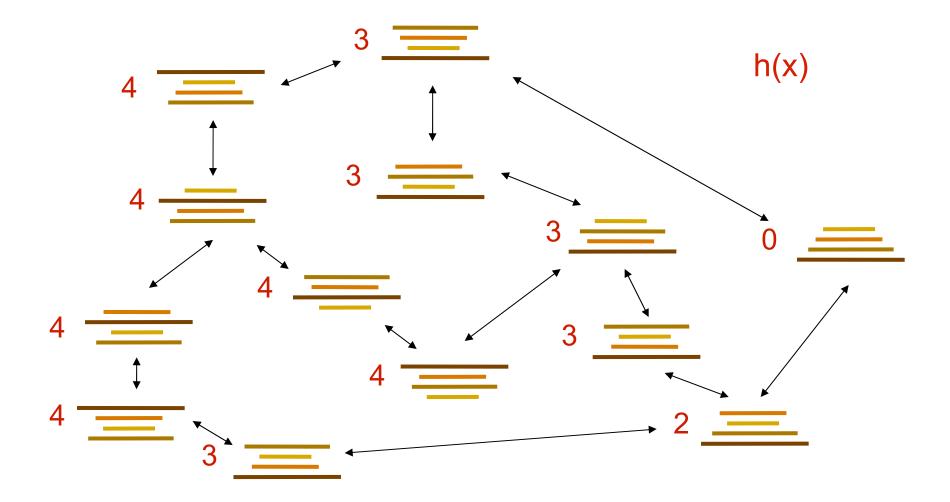
General Tree Search





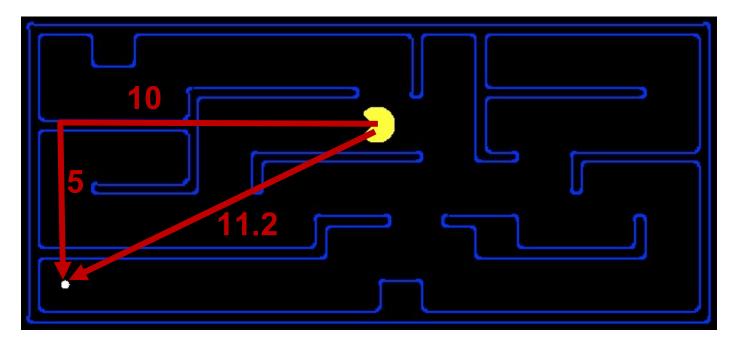
Example: Heuristic Function

Heuristic: the largest pancake that is still out of place



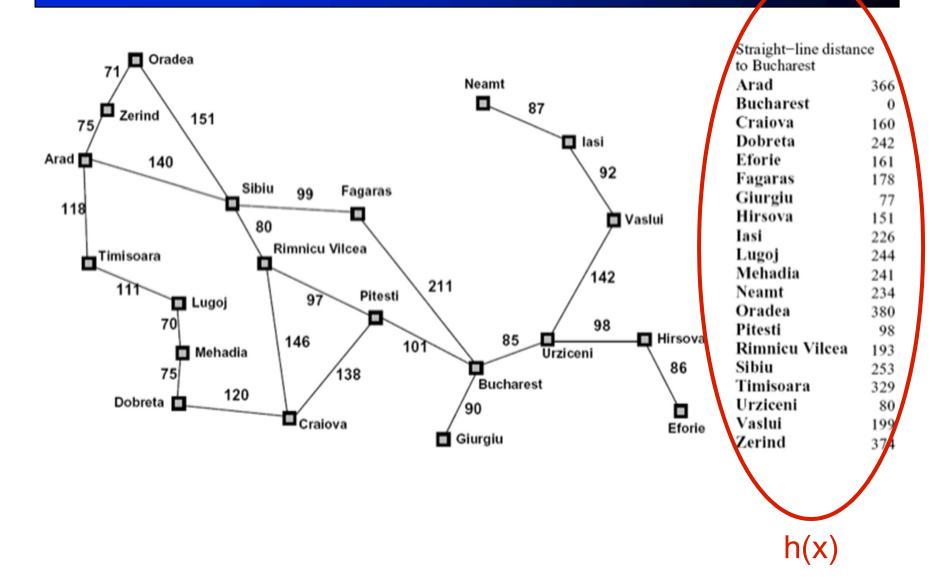
What is a *Heuristic*?

- An estimate of how close a state is to a goal
- Designed for a particular search problem



 Examples: Manhattan distance: 10+5 = 15 Euclidean distance: 11.2

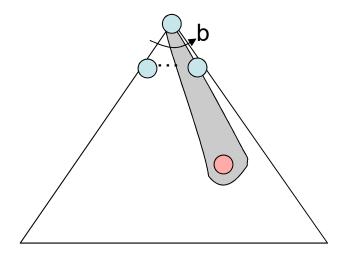
Example: Heuristic Function

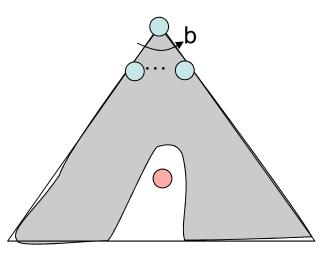


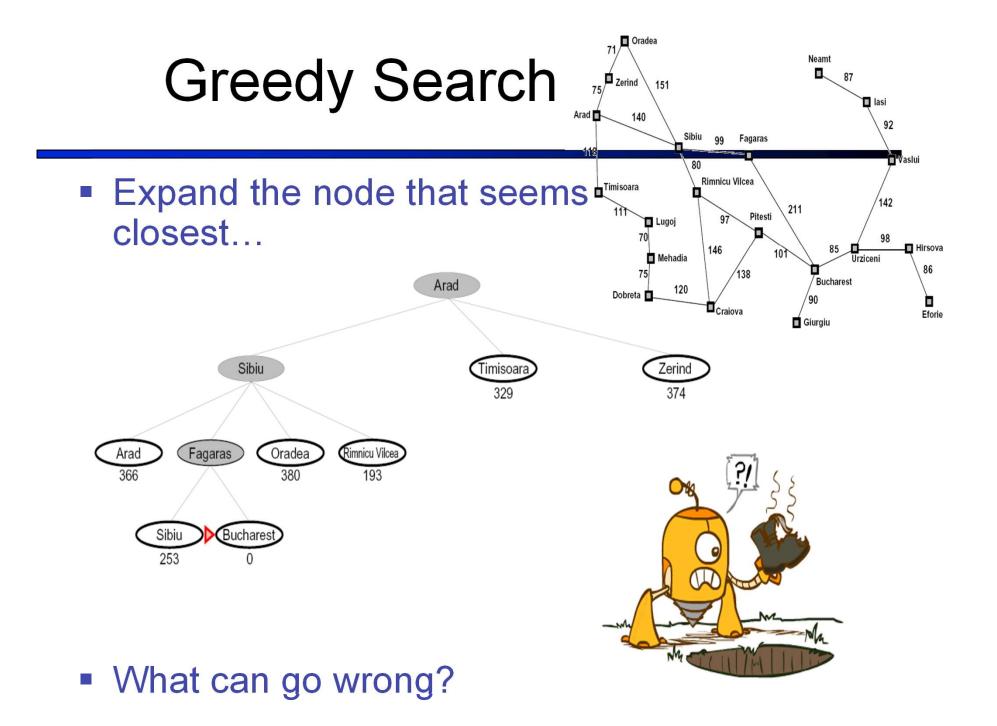
Greedy Search

Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS



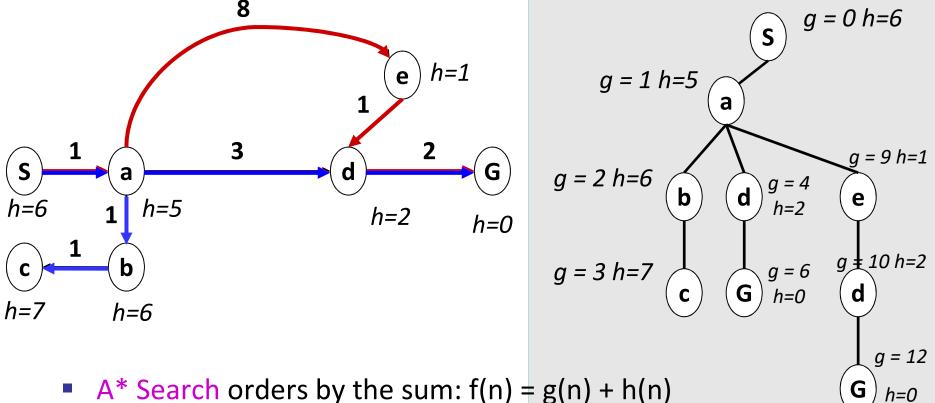




A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- **Greedy** orders by goal proximity, or *forward cost* h(n)

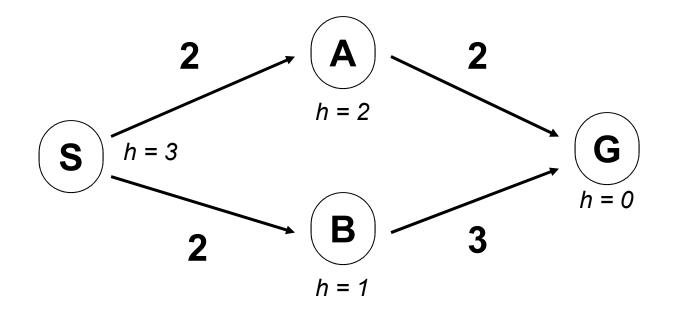


A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

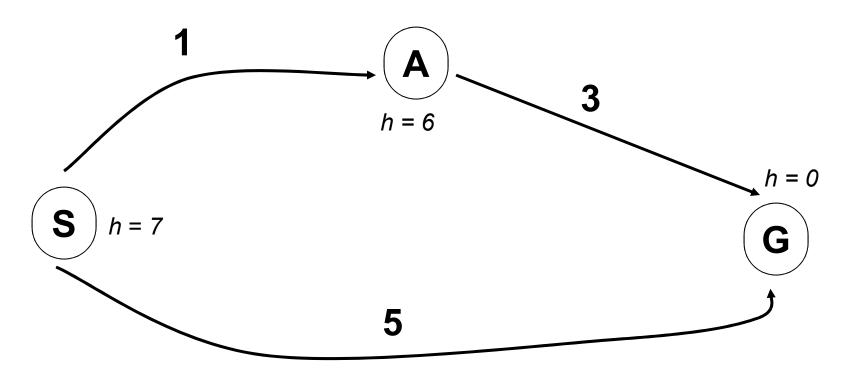
When should A* terminate?

Should we stop when we enqueue a goal?



No: only stop when we dequeue a goal

Is A* Optimal?



- What went wrong?
- Actual bad goal cost < estimated good path cost</p>
- We need estimates to be less than or equal to actual costs!

Admissible Heuristics

• A heuristic h is admissible (optimistic) if: $0 \le h(n) \le h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

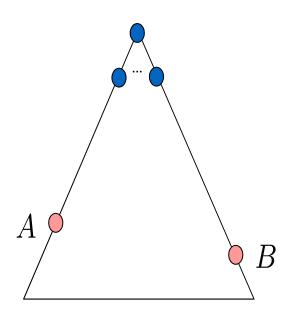
- Examples:
 4 _____
- Coming up with admissible heuristics is most of what's involved in using A* in practice.

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

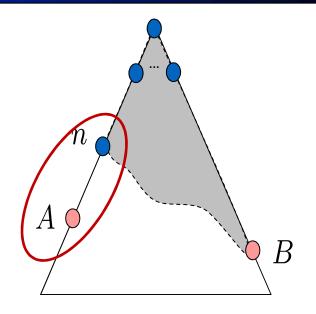
Claim:

A will exit the fringe before B



Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)



f(n) = g(n) + h(n)Definition of f-cost $f(n) \leq g(A)$ Admissibility of hg(A) = f(A)h = 0 at a goal

Proof:

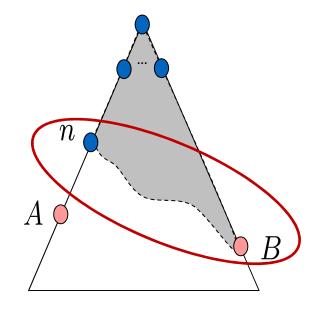
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

g(A) < g(B)f(A) < f(B)

B is suboptimal h = 0 at a goal

Proof:

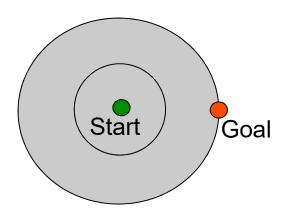
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal



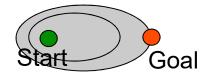
 $f(n) \le f(A) < f(B)$

UCS vs A* Contours

 Uniform-cost expanded in all directions

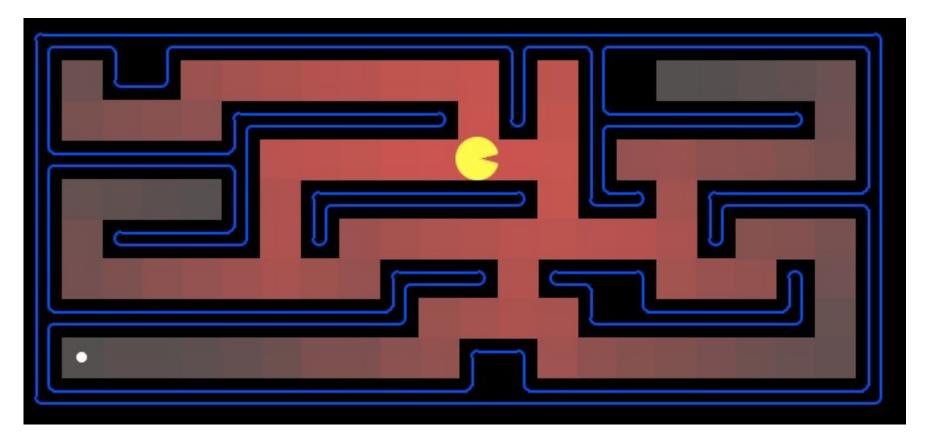


 A* expands mainly toward the goal, but hedges its bets to ensure optimality



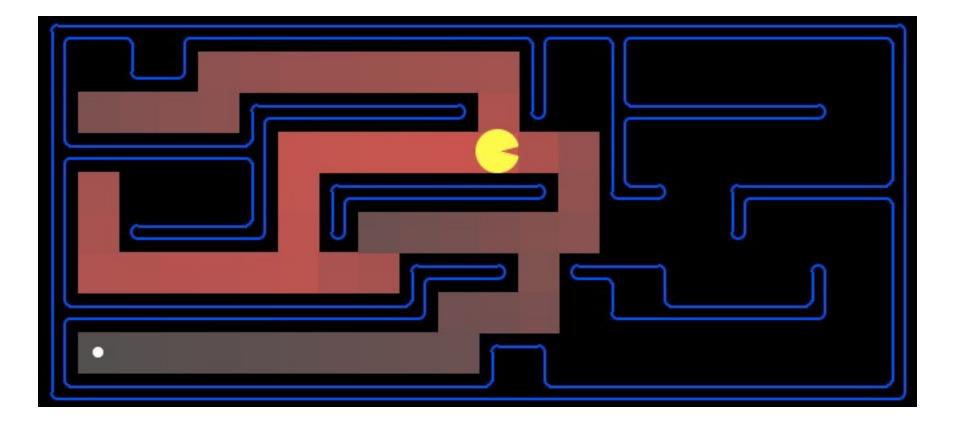
Which Algorithm?

• Uniform cost search (UCS):



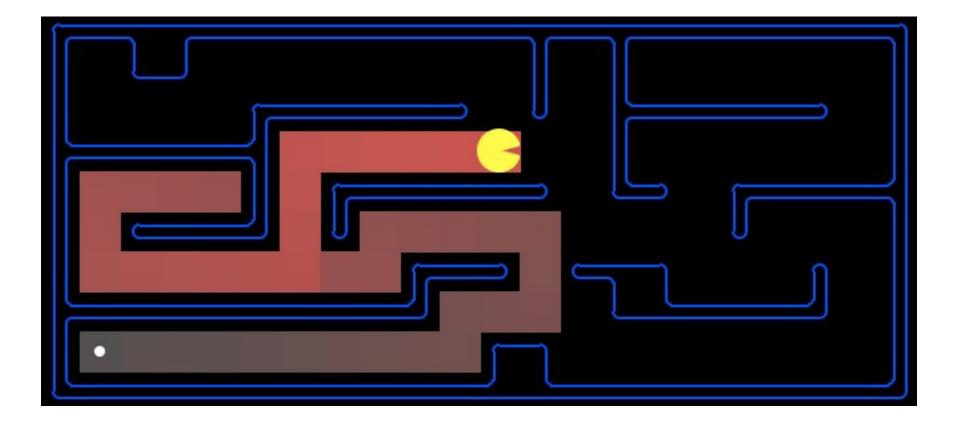
Which Algorithm?

A*, Manhattan Heuristic:



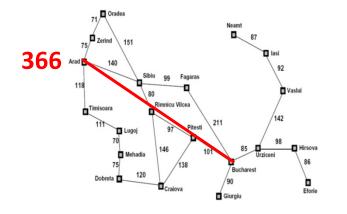
Which Algorithm?

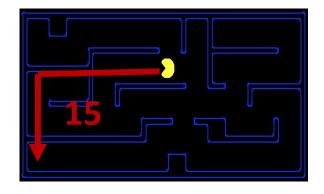
Best First / Greedy, Manhattan Heuristic:



Creating Admissible Heuristics

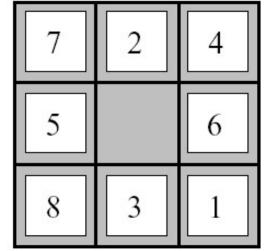
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available



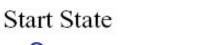


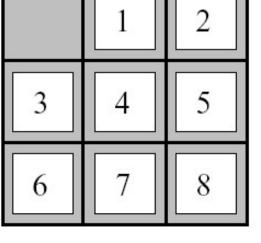
Inadmissible heuristics are often useful too

Creating Heuristics



8-puzzle: 5

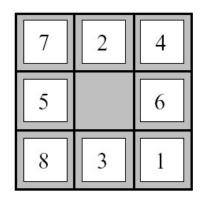


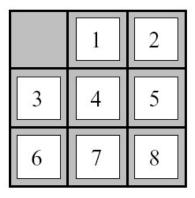


- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

 Heuristic: Number of tiles misplaced





Start State

Goal State

Is it admissible?

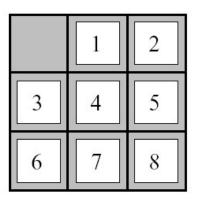
h(start) = 8

Average nodes expanded when
optimal path has length......4 steps...8 stepsUCS1126,3003.6 x 106TILES1339227

8 Puzzle II

- What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- h(start) = 3 + 1 + 2 + ...

7	2	4
5		6
8	3	1



Start State

Goal State

= 18		Average nodes expanded when optimal path has length		
		4 steps	8 steps	12 steps
)	TILES	13	39	227
	MANHATTAN	12	25	73

Admissible?

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

exact $max(h_a, h_b)$ h_a h_b h_c zero

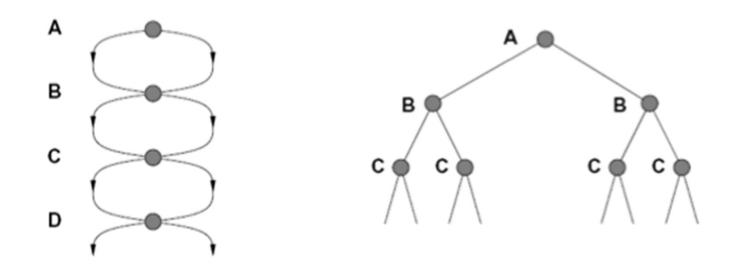
A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• • • •

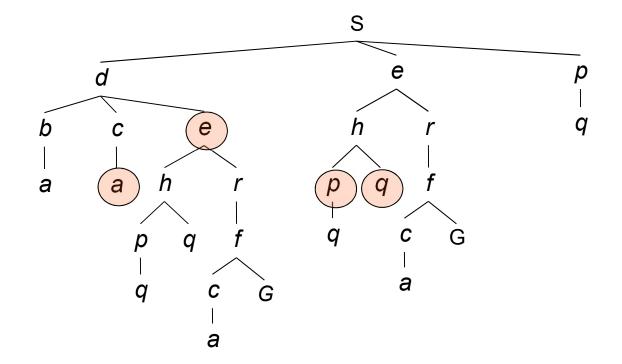
Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?



Graph Search

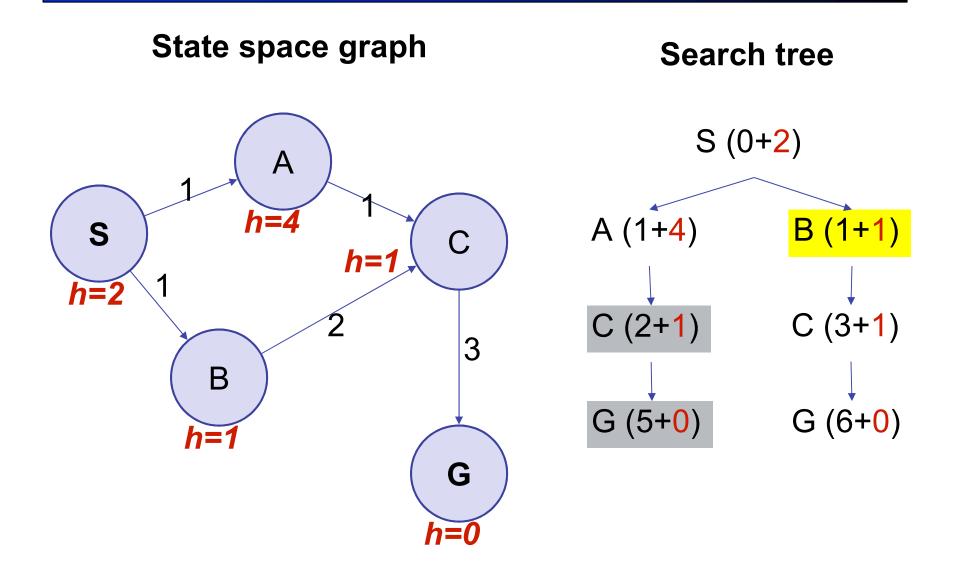
In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)



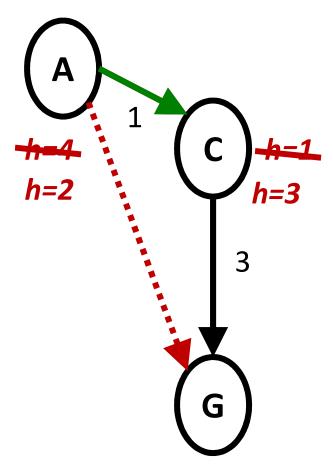
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Hint: in python, store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

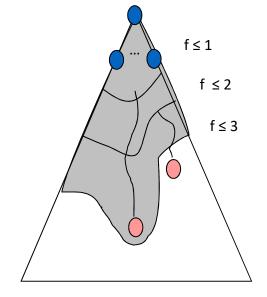
- Consequences of consistency:
 - The f value along a path never decreases
 h(A) ≤ cost(A to C) + h(C)

 $f(A) = g(A) + h(A) \le g(A) + cost(A \text{ to } C) + h(C) = f(C)$

A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Nodes are popped with non-decreasing fscores: for all n, n' with n' popped after n : f(n') ≥ f(n)
 - Proof by induction: (1) always pop the lowest fscore from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
 - For every state s, nodes that reach s optimally are expanded before nodes that reach s sub-optimally
 - Result: A* graph search is optimal



Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems