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CSE 473: Artificial Intelligence

Autumn 2018

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

Today

 A* Search

 Heuristic Design

 Graph search

Recap: Search

 Search problem:
 States (configurations of the world)
 Successor function: a function from states to 

lists of (state, action, cost) triples; drawn as a graph
 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)

 Search Algorithm:
 Systematically builds a search tree
 Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the
top n pancakes

Example: Pancake Problem Example: Pancake Problem
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General Tree Search

Action: flip top 
two

Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Example: Heuristic Function
Heuristic: the largest pancake that is still out of place
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h(x)

What is a Heuristic?

 An estimate of how close a state is to a goal

 Designed for a particular search problem
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 Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Example: Heuristic Function

h(x)

Greedy Search Best First (Greedy)

 Strategy: expand a node 
that you think is closest to 
a goal state
 Heuristic: estimate of 

distance to nearest goal for 
each state

 A common case:
 Best-first takes you straight 

to the (wrong) goal

 Worst-case: like a badly-
guided DFS

…
b

…
b
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Greedy Search

 Expand the node that seems 
closest…

 What can go wrong?

A* Search

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost  
g(n)

 Greedy orders by goal proximity, or forward cost  h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)
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Example: Teg Grenager
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 Should we stop when we enqueue a goal?

When should A* terminate?
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 No: only stop when we dequeue a goal

Is A* Optimal?
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 What went wrong?
 Actual bad goal cost < estimated good path cost
 We need estimates to be less than or equal to 

actual costs!

Admissible Heuristics

 A heuristic h is admissible (optimistic) if:

where             is the true cost to a nearest goal

4 15

 Examples:

 Coming up with admissible heuristics is most of 
what’s involved in using A* in practice.
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Optimality of A* Tree Search
Assume:
 A is an optimal goal node
 B is a suboptimal goal node
 h is admissible

Claim:

 A will exit the fringe before B

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the 

fringe, too (maybe A!)
 Claim: n will be expanded 

before B
1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the 

fringe, too (maybe A!)
 Claim: n will be expanded 

before B
1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the 

fringe, too (maybe A!)
 Claim: n will be expanded 

before B
1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

 All ancestors of A expand 
before B

 A expands before B
 A* search is optimal

…

UCS vs A* Contours

 Uniform-cost expanded 
in all directions

 A* expands mainly 
toward the goal, but 
hedges its bets to 
ensure optimality

Start Goal

Start Goal

Which Algorithm?

 Uniform cost search (UCS):
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Which Algorithm?

 A*, Manhattan Heuristic:

Which Algorithm?

 Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

 Most of the work in solving hard search problems 
optimally is in coming up with admissible heuristics

 Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available

 Inadmissible heuristics are often useful too

15
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Creating Heuristics

 What are the states?
 How many states?
 What are the actions?
 What states can I reach from the start state?
 What should the costs be?

8-puzzle:

8 Puzzle I

 Heuristic: Number of 
tiles misplaced

 h(start) = 8

Average nodes expanded when 
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

 Is it admissible?

8 Puzzle II

 What if we had an easier 8-
puzzle where any tile could 
slide any direction at any 
time, ignoring other tiles?

 Total Manhattan distance
 h(start) = 3 + 1 + 2 + …

= 18 Average nodes expanded when 
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73
 Admissible?
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8 Puzzle III

 How about using the actual cost as a 
heuristic?
 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of 
estimate and work per node!

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what 

does this give us?)

 Top of lattice is the exact heuristic

A* Applications

 Pathing / routing problems

 Resource planning problems

 Robot motion planning

 Language analysis

 Machine translation

 Speech recognition

 …

Tree Search: Extra Work!

 Failure to detect repeated states can cause 
exponentially more work.  Why?

Graph Search

 In BFS, for example, we shouldn’t bother 
expanding some nodes (which, and why?)
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Graph Search
 Idea: never expand a state twice

 How to implement: 

 Tree search + set of expanded states (“closed set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check to make sure its state has never 
been expanded before

 If not new, skip it, if new add to closed set

 Hint: in python, store the closed set as a set, not a list

 Can graph search wreck completeness?  Why/why not?

 How about optimality?
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A* Graph Search Gone Wrong
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Consistency of Heuristics

 Main idea: estimated heuristic costs ≤ actual 
costs
 Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for 
each arc

h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:
 The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

f(A) =  g(A) + h(A) ≤ g(A) + cost(A to C) + h(C) = f(C)

 A* graph search is optimal
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Optimality of A* Graph Search

 Sketch: consider what A* does with a 
consistent heuristic:

 Nodes are popped with non-decreasing f-
scores: for all n, n’ with n’ popped after n : 
f(n’) ≥ f(n)
 Proof by induction: (1) always pop the lowest f-

score from the fringe, (2) all new nodes have 
larger (or equal) scores, (3) add them to the 
fringe, (4) repeat!

 For every state s, nodes that reach s 
optimally are expanded before nodes that 
reach s sub-optimally

 Result: A* graph search is optimal

…

f ≤ 3

f  ≤ 2

f ≤ 1

Optimality

 Tree search:
 A* optimal if heuristic is admissible (and non-negative)
 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, natural admissible heuristics tend to 
be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and 
(estimates of) forward costs

 A* is optimal with admissible / consistent
heuristics

 Heuristic design is key: often use relaxed 
problems


