
9/25/2018

1

CSE 473: Artificial Intelligence

Autumn 2018

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

 A* Search

 Heuristic Design

 Graph search

Recap: Search

 Search problem:
 States (configurations of the world)
 Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)

 Search Algorithm:
 Systematically builds a search tree
 Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the
top n pancakes

Example: Pancake Problem Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

3

9/25/2018

2

General Tree Search

Action: flip top
two

Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Example: Heuristic Function
Heuristic: the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

What is a Heuristic?

 An estimate of how close a state is to a goal

 Designed for a particular search problem

10

5
11.2

 Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Example: Heuristic Function

h(x)

Greedy Search Best First (Greedy)

 Strategy: expand a node
that you think is closest to
a goal state
 Heuristic: estimate of

distance to nearest goal for
each state

 A common case:
 Best-first takes you straight

to the (wrong) goal

 Worst-case: like a badly-
guided DFS

…
b

…
b

9/25/2018

3

Greedy Search

 Expand the node that seems
closest…

 What can go wrong?

A* Search

Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost
g(n)

 Greedy orders by goal proximity, or forward cost h(n)

 A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0 h=6

g = 1 h=5

g = 2 h=6

g = 3 h=7

g = 4
h=2

g = 6
h=0

g = 9 h=1

g = 10 h=2

g = 12

h=0

 Should we stop when we enqueue a goal?

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

 No: only stop when we dequeue a goal

Is A* Optimal?

A

GS

1

3
h = 6

h = 0

5

h = 7

 What went wrong?
 Actual bad goal cost < estimated good path cost
 We need estimates to be less than or equal to

actual costs!

Admissible Heuristics

 A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

4 15

 Examples:

 Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

9/25/2018

4

Optimality of A* Tree Search
Assume:
 A is an optimal goal node
 B is a suboptimal goal node
 h is admissible

Claim:

 A will exit the fringe before B

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the

fringe, too (maybe A!)
 Claim: n will be expanded

before B
1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the

fringe, too (maybe A!)
 Claim: n will be expanded

before B
1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search
Proof:
 Imagine B is on the fringe
 Some ancestor n of A is on the

fringe, too (maybe A!)
 Claim: n will be expanded

before B
1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

 All ancestors of A expand
before B

 A expands before B
 A* search is optimal

…

UCS vs A* Contours

 Uniform-cost expanded
in all directions

 A* expands mainly
toward the goal, but
hedges its bets to
ensure optimality

Start Goal

Start Goal

Which Algorithm?

 Uniform cost search (UCS):

9/25/2018

5

Which Algorithm?

 A*, Manhattan Heuristic:

Which Algorithm?

 Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

 Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

 Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

 Inadmissible heuristics are often useful too

15

366

Creating Heuristics

 What are the states?
 How many states?
 What are the actions?
 What states can I reach from the start state?
 What should the costs be?

8-puzzle:

8 Puzzle I

 Heuristic: Number of
tiles misplaced

 h(start) = 8

Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

 Is it admissible?

8 Puzzle II

 What if we had an easier 8-
puzzle where any tile could
slide any direction at any
time, ignoring other tiles?

 Total Manhattan distance
 h(start) = 3 + 1 + 2 + …

= 18 Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73
 Admissible?

9/25/2018

6

8 Puzzle III

 How about using the actual cost as a
heuristic?
 Would it be admissible?

 Would we save on nodes expanded?

 What’s wrong with it?

 With A*: a trade-off between quality of
estimate and work per node!

Trivial Heuristics, Dominance

 Dominance: ha ≥ hc if

 Heuristics form a semi-lattice:
 Max of admissible heuristics is admissible

 Trivial heuristics
 Bottom of lattice is the zero heuristic (what

does this give us?)

 Top of lattice is the exact heuristic

A* Applications

 Pathing / routing problems

 Resource planning problems

 Robot motion planning

 Language analysis

 Machine translation

 Speech recognition

 …

Tree Search: Extra Work!

 Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

 In BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search
 Idea: never expand a state twice

 How to implement:

 Tree search + set of expanded states (“closed set”)

 Expand the search tree node-by-node, but…

 Before expanding a node, check to make sure its state has never
been expanded before

 If not new, skip it, if new add to closed set

 Hint: in python, store the closed set as a set, not a list

 Can graph search wreck completeness? Why/why not?

 How about optimality?

9/25/2018

7

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

Consistency of Heuristics

 Main idea: estimated heuristic costs ≤ actual
costs
 Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

 Consistency: heuristic “arc” cost ≤ actual cost for
each arc

h(A) – h(C) ≤ cost(A to C)

 Consequences of consistency:
 The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

f(A) = g(A) + h(A) ≤ g(A) + cost(A to C) + h(C) = f(C)

 A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2 h=3

Optimality of A* Graph Search

 Sketch: consider what A* does with a
consistent heuristic:

 Nodes are popped with non-decreasing f-
scores: for all n, n’ with n’ popped after n :
f(n’) ≥ f(n)
 Proof by induction: (1) always pop the lowest f-

score from the fringe, (2) all new nodes have
larger (or equal) scores, (3) add them to the
fringe, (4) repeat!

 For every state s, nodes that reach s
optimally are expanded before nodes that
reach s sub-optimally

 Result: A* graph search is optimal

…

f ≤ 3

f ≤ 2

f ≤ 1

Optimality

 Tree search:
 A* optimal if heuristic is admissible (and non-negative)
 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, natural admissible heuristics tend to
be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and
(estimates of) forward costs

 A* is optimal with admissible / consistent
heuristics

 Heuristic design is key: often use relaxed
problems

