
CSE 473: Artificial Intelligence
Markov Decision Processes

Steve Tanimoto

University of Washington
[Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have

been taken, the agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

 An MDP is defined by:
 A set of states s in S
 A set of actions a in A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

T(s11, E, …
…

T(s31, N, s11) = 0
…

T(s31, N, s32) = 0.8
T(s31, N, s21) = 0.1
T(s31, N, s41) = 0.1

…

T is a Big Table!
11 X 4 x 11 = 484 entries

For now, we give this as input to the agent

Markov Decision Processes

 An MDP is defined by:
 A set of states s in S
 A set of actions a in A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)

…
R(s32, N, s33) = -0.01

…
R(s32, N, s42) = -1.01

R(s33, E, s43) = 0.99
…

Cost of breathing

R is also a Big Table!

For now, we also give this to the agent

Markov Decision Processes

 An MDP is defined by:
 A set of states s in S
 A set of actions a in A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

…

R(s33) = -0.01

R(s42) = -1.01

R(s43) = 0.99

Markov Decision Processes

 An MDP is defined by:
 A set of states s in S
 A set of actions a in A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems
 One way to solve them is with expectimax search
 We’ll have a new tool soon

What is Markov about MDPs?

 “Markov” generally means that given the present state, the
future and the past are independent

 For Markov decision processes, “Markov” means action
outcomes depend only on the current state

 This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy is one that maximizes

expected utility if followed
 An explicit policy defines a reflex agent

 Expectimax didn’t compute entire policies
 It computed the action for a single state only

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing
 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

 Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

 What preferences should an agent have over reward sequences?

 More or less?

 Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

 How to discount?
 Each time we descend a level, we

multiply in the discount once

 Why discount?
 Sooner rewards probably do have

higher utility than later rewards
 Also helps our algorithms converge

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])

Stationary Preferences

 Theorem: if we assume stationary preferences:

 Then: there are only two ways to define utilities

 Additive utility:

 Discounted utility:

Quiz: Discounting

 Given:

 Actions: East, West, and Exit (only available in exit states a, e)
 Transitions: deterministic

 Quiz 1: For γ = 1, what is the optimal policy?

 Quiz 2: For γ = 0.1, what is the optimal policy?

 Quiz 3: For which γ are West and East equally good when in state d?

10*g 3 = 1*g

g 2 =
1

10

Infinite Utilities?!

 Problem: What if the game lasts forever? Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (γ depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

 Markov decision processes:
 Set of states S
 Start state s0
 Set of actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)

 MDP quantities so far:
 Policy = Choice of action for each state
 Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

 Value Iteration
 Policy Iteration

 Reinforcement Learning

Optimal Quantities

 The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

 Fundamental operation: compute the (expectimax) value of a state
 Expected utility under optimal action
 Average sum of (discounted) rewards
 This is just what expectimax computed!

 Recursive definition of value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

 We’re doing way too much
work with expectimax!

 Problem: States are repeated
 Idea: Only compute needed

quantities once

 Problem: Tree goes on forever
 Idea: Do a depth-limited

computation, but with increasing
depths until change is small

 Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

 Key idea: time-limited values

 Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
 Equivalently, it’s what a depth-k expectimax would give from s

Computing Time-Limited Values

Value Iteration

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

 Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

 These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Value Iteration

 Bellman equations characterize the optimal values:

 Value iteration computes them:

 Value iteration is just a fixed point solution method
 … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Value Iteration Algorithm
 Start with V0(s) = 0:

 Given vector of Vk(s) values, do one ply of expectimax from each state:

 Repeat until convergence

 Complexity of each iteration: O(S2A)
 Number of iterations: poly(|S|, |A|, 1/(1-γ))

 Theorem: will converge to unique optimal values

a

Vk+1(s)

s, a

s,a,s’

)’s(kV

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Convergence*

 How do we know the Vk vectors will converge?

 Case 1: If the tree has maximum depth M, then
VM holds the actual untruncated values

 Case 2: If the discount is less than 1
 Sketch: For any state Vk and Vk+1 can be viewed as

depth k+1 expectimax results in nearly identical
search trees

 The max difference happens if big reward at k+1 level
 That last layer is at best all RMAX

 But everything is discounted by γk that far out
 So Vk and Vk+1 are at most γk max|R| different
 So as k increases, the values converge

Computing Actions from Values

 Let’s imagine we have the optimal values V*(s)

 How should we act?
 It’s not obvious!

 We need to do a mini-expectimax (one step)

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

 Let’s imagine we have the optimal q-values:

 How should we act?
 Completely trivial to decide!

 Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

 Value iteration repeats the Bellman updates:

 Problem 1: It’s slow – O(S2A) per iteration

 Problem 2: The “max” at each state rarely changes

 Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

VI  Asynchronous VI

 Is it essential to back up all states in each iteration?
 No!

 States may be backed up
 many times or not at all
 in any order

 As long as no state gets starved…
 convergence properties still hold!!

56

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

Asynch VI: Prioritized Sweeping

 Why backup a state if values of successors same?
 Prefer backing a state
 whose successors had most change

 Priority Queue of (state, expected change in value)
 Backup in the order of priority
 After backing a state update priority queue
 for all predecessors

