Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$:
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics

$T(s_{11}, E, \ldots)$

\vdots

$T(s_{31}, N, s_{11}) = 0$

\vdots

$T(s_{31}, N, s_{32}) = 0.8$

$T(s_{31}, N, s_{21}) = 0.1$

$T(s_{31}, N, s_{41}) = 0.1$

\vdots

T is a Big Table!

$11 \times 4 \times 11 = 484$ entries

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$

\[
\begin{align*}
R(s_{32}, N, s_{33}) &= -0.01 \\
\ldots \\
R(s_{32}, N, s_{42}) &= -1.01 \\
\ldots \\
R(s_{33}, E, s_{43}) &= 0.99
\end{align*}
\]

- Cost of breathing

R is also a Big Table!

For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \) in \(S \)
 - A set of actions \(a \) in \(A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s' | s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)

...

\[R(s_{33}) = -0.01 \]
\[R(s_{42}) = -1.01 \]
\[R(s_{43}) = 0.99 \]
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \) in \(S \)
 - A set of actions \(a \) in \(A \)
 - A transition function \(T(s, a, s') \)
 - Probability that \(a \) from \(s \) leads to \(s' \), i.e., \(P(s' | s, a) \)
 - Also called the model or the dynamics
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state.

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
- It computed the action for a single state only

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s
Optimal Policies

\[R(s) = -2.0 \]
\[R(s) = -0.4 \]
\[R(s) = -0.03 \]
\[R(s) = -0.01 \]
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
Racing Search Tree
Each MDP state projects an expectimax-like search tree

- (s,a,s') called a transition
- \(T(s,a,s') = P(s' | s,a) \)
- \(R(s,a,s') \)
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \([1, 2, 2]\) or \([2, 3, 4]\)
- Now or later? \([0, 0, 1]\) or \([1, 0, 0]\)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[\text{Worth Now} \quad 1 \quad \text{Worth Next Step} \quad \gamma \quad \text{Worth In Two Steps} \quad \gamma^2 \]
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3$
 - $U([1,2,3]) < U([3,2,1])$
Stationary Preferences

- **Theorem:** if we assume stationary preferences:

 \[[a_1, a_2, \ldots] \succeq [b_1, b_2, \ldots] \]

 \[\iff \]

 \[[r, a_1, a_2, \ldots] \succeq [r, b_1, b_2, \ldots] \]

- **Then:** there are only two ways to define utilities
 - Additive utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \)
 - Discounted utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \)
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

- Quiz 3: For which γ are West and East equally good when in state d?

\[
10 \cdot \gamma^3 = 1 \cdot \gamma
\]

\[
\gamma^2 = \frac{1}{10}
\]
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - **Finite horizon:** (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (γ depends on time left)
 - **Discounting:** use $0 < \gamma < 1$
 - $U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)$
 - Smaller γ means smaller “horizon” – shorter term focus
 - **Absorbing state:** guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs

- Value Iteration
- Policy Iteration
- Reinforcement Learning
Optimal Quantities

- The value (utility) of a state s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state (s, a):
 \[Q^*(s, a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

- **Fundamental operation:** compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- **Recursive definition of value:**

 \[
 V^*(s) = \max_a Q^*(s, a)
 \]

 \[
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]

 \[
 V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
Racing Search Tree
Racing Search Tree

- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
Computing Time-Limited Values

$V_0(\text{ }) \quad V_0(\text{ }) \quad V_0(\text{ })$

$V_1(\text{ }) \quad V_1(\text{ }) \quad V_1(\text{ })$

$V_2(\text{ }) \quad V_2(\text{ }) \quad V_2(\text{ })$

$V_3(\text{ }) \quad V_3(\text{ }) \quad V_3(\text{ })$

$V_4(\text{ }) \quad V_4(\text{ }) \quad V_4(\text{ })$
Value Iteration
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over
Value Iteration

- Bellman equations characterize the optimal values:
 \[
 V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]

- Value iteration computes them:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values
Value Iteration Algorithm

- Start with $V_0(s) = 0$:
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
- Repeat until convergence

- Complexity of each iteration: $O(S^2A)$
- Number of iterations: $\text{poly}(|S|, |A|, 1/(1-\gamma))$
- Theorem: will converge to unique optimal values
$k=0$

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=6

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

0.62 | 0.74 | 0.85 | 1.00

0.50 | | 0.57 | -1.00

0.34 | 0.36 | 0.45 | 0.24

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 10$

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=11$

Values after 11 iterations:

- Top left: 0.64
- Top middle: 0.74
- Top right: 0.85
- Middle left: 0.56
- Middle: 0.57
- Middle right: -1.00
- Bottom left: 0.48
- Bottom middle: 0.42
- Bottom right: 0.47
- Bottom middle right: 0.27

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0
Convergence*

- How do we know the V_k vectors will converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The max difference happens if big reward at $k+1$ level
 - That last layer is at best all R_{MAX}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
VI → Asynchronous VI

- Is it essential to back up all states in each iteration?
 - No!

- States may be backed up
 - many times or not at all
 - in any order

- As long as no state gets starved...
 - convergence properties still hold!!
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

\[\text{Noise} = 0.2 \]
\[\text{Discount} = 0.9 \]
\[\text{Living reward} = 0 \]

\[k=2 \]

VALUES AFTER 2 ITERATIONS

\begin{array}{cccc}
 0.00 & 0.00 & 0.72 & 1.00 \\
 0.00 & 0.00 & 0.00 & -1.00 \\
 0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change

- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors