T COULDRESTRUCTURE | | EH, SCREW GOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

R U\SE ONELITIE goto ain-sub3;
‘GOTO* INSTEAD.

\
E )ﬂ : ?*Conmﬂ

CS 473: Artificial Intelligence

Bayes’ Nets: Independence

Steve Tanimoto

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Bayes’ Nets

Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
= Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

JRepresentation
= Conditional Independences
= Probabilistic Inference

= |Learning Bayes’ Nets from Data

Conditional Independence

Bayes Nets: Assumptions

= X and Y are independent if
Vz,y P(z,y) = P(z)P(y) ---=+ X1Y
= X and Y are conditionally independent given Z
Va,y,z P(z,y|z) = P(z|z)P(ylz) ---= X 1Y |Z

* (Conditional) independence is a property of a distribution

= Example: Alarm L Fire|Smoke

Assumptions we are required to make to define the
Bayes net when given the graph:

Plafay- - ai-1) = Plai|parents(X,))

Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

Important for modeling: understand assumptions made
when choosing a Bayes net graph




Independence in a BN

D-separation: Outline

Important question about a BN:

= Are two nodes independent given certain evidence?
= |If yes, can prove using algebra (tedious in general)

= If no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

D-separation: Outline

Causal Chains

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

= This configuration is a “causal chain”

s

asl
&0

X: Low pressure Y: Rain Z: Traffic

P(x,y,2) = P(z)P(y|lz) P(2]y)

= Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

= In numbers:

Pl+y [4x) =1, Py [ -x)=1,
P(+z]+y)=1,P(-2 | -y) =1

Causal Chains

Common Cause

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

P(x,y,2)
P(z,y)

_ P@)P(ylz) P(zly)
P(z)P(ylz)

= P(zly)

Yes!

P(elz,y) =

X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P P “ ”
(@9.2) @ Pl)P(ly) = Evidence along the chain “blocks” the

influence

= This configuration is a “common cause”
! i
Y: Project ?
due

\@El Z:Lab full

P(z,y,z) = P(y)P(z|y) P(z|y)

X: Forums
busy

= Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= In numbers:

P(+x | +y)=1,P(x|y)=1,
P(+z|+y)=1P(-z|-y)=1




Common Cause

Common Effect

= This configuration is a “common cause”

frogrt |
el

¥

Y: Project
due

5
X: Forums g&k Z:Lab full
busy l,
e 3

P(z,y,z) = P(y)P(z|y) P(z|y)

= Guaranteed X and Z independent given Y?

P(z,y,2)
P(z,y)

_ P)P(xly)P(zly)
P(y)P(zly)

P(zlz,y) =

= P(zly)
Yes!

= Observing the cause blocks influence
between effects.

= Last configuration: two causes of one = Are X and Y independent?

effect (V_Stru‘:tures) = Yes: the ballgame and the rain cause traffic, but

they are not correlated

X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

L*

G._a = This is backwards from the other cases

g

7. Traffic | 20
aci

= Observing an effect activates influence between
possible causes.

The General Case

The General Case

= General question: in a given BN, are two variables independent

(given evidence)?
(5 ®
B &5,
& D

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases

Reachability

Active / Inactive Paths

= Recipe: shade evidence nodes, look
for paths in the resulting graph

Attempt 1: if two nodes are connected
by an undirected path not blocked by
a shaded node, then they are not
conditionally independent

= Almost works, but not quite
= Where does it break?
= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”

= Question: Are X and Y conditionally independent given ~ Active Triples Inactive Triples
evidence variables {Z}?
= Yes, ifXand Y “d-separated” by Z O—O—O
= Consider all (undirected) paths from X to Y
* No active paths = independence! O

= A path is active if each triple is active:
= Causal chain A > B > C where B is unobserved (either direction)
= Common cause A € B -> C where B is unobserved
= Common effect (aka v-structure)
A - B € Cwhere B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

~{q 28




D-Separation

Example

= aquery:  X; AL X;{ Xk, X, } ?

= Check all (undirected!) paths between X; and X;

= If one or more active, then independence not guaranteed

RIB Yes o e

RIB|T

Xill*X]'HXklv'“»an} ,
RILB|T (1)

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed
X AL X]l{Xku ey an }
Example Example
? = Variables:
= R: Raining
LT |T Yes = T: Traffic (&)

LI B Yes
L1.B|T
LA B|T' Q o
LIB|T,R Yes
@,

= D: Roof drips

= S: I'm sad 0 Q

= Questions:
T D
TID|R Yes
T DI|R,S

Structure Implications

Computing All Independences

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X I X { Xk Xie, }

= This list determines the set of probability
distributions that can be represented

CompuTE ALL THE &

\ NDEPENDENCES!




Topology Limits Distributions

Bayes Nets Representation Summary

XLY,XLZYLZ X1UzZ|Y}

Given some graph topology XL Z|YXAY|ZY 17 X)

G, only certain joint
distributions can be

O]
encoded ® @

The graph structure

guarantees certain
(conditional) independences N
(There might be more
independence)
N
Adding arcs increases the b {
set of distributions, but has

several costs &) &
Full conditioning can encode

any distribution (&) &

P PRSP

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

ABayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution

Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data




