CSE 473: Artificial Intelligence Autumn 2018

Constraint Satisfaction Problems - Part 1 of 2

Steve Tanimoto

h slides from : ter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Previously

- Formulating problems as search
- Blind search algorithms
 - Depth first
 - Breadth first (uniform cost)
 - Iterative deepening
- Heuristic Search
 - Best first
 - Beam (Hill climbing)
 - A*
 - IDA*
- Heuristic generation
 - Exact soln to a relaxed problem
 - Pattern databases
- Local Search
 - Hill climbing, random moves, random restarts, simulated annealing

What is Search For?

lanning: sequences of actions

- The *path to the goal* is the important thing
- Paths have various costs, depths
- Assume little about problem structure

lentification: assignments to variables

- The **goal itself** is important, **not the path**
- All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are *structured* (factored) identification problems

Constraint Satisfaction Problems

Standard search problems:

- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):

- A special subset of search problems
- State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Making use of CSP formulation allows for optimized algorithms

Typical example of trading generality for utility (in this case, speed)

Constraint Satisfaction Problems

- "Factoring" the state space
- Representing the state space in a knowledge representation
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

CSP Example: N-Queens

- Variables: X_{ij}
- Domains: {0,1}
- Constraints

$$\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$$

 $\sum_{i,j} X_{ij} = N$

CSP Example: N-Queens

Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$ Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

CSP Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

 $((p \leftrightarrow q) \land r) \lor (p \land q \land \sim r)$

- Variables: propositional variables
- Domains: {T, F}
- **Constraints:** logical formula

CSP Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green V=red, SA=blue, T=green}

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

Variables:

 $F T U W R O X_1 X_2 X_3$ Domains:

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

 $\operatorname{alldiff}(F, T, U, W, R, O)$

 $O + O = R + 10 \cdot X_1$

T W O + T W O F O U R F O U R F O U R F O U R

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Space Shuttle Repair
- Transportation scheduling
- Factory scheduling
- ... lots more!

Example: The Waltz Algorithm

- he Waltz algorithm is for interpreting ne drawings of solid polyhedra as 3D bjects
- n early example of an AI computation osed as a CSP

Waltz on Simple Scenes

Assume all objects:

- Have no shadows or cracks
- Three-faced vertices
- "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (>) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: edges
- **Domains:** >, <, +, -
- **Constraints:** legal junction types

Slight Problem: Local vs Global Consistency

Varieties of CSPs

Varieties of CSP Variables

Discrete Variables

- Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
- Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

Varieties of Constraints

Unary constraints involve a single variable (equivalent reducing domains), e.g.:

 $SA \neq green$

Binary constraints involve pairs of variables, e.g.:

 $\mathsf{SA}\neq\mathsf{WA}$

 Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

Preferences (soft constraints):

- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Solving CSPs

CSP as Search

- States
- Operators
- Initial State
- Goal State

Standard Depth First Search

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

We'll start with the straightforward, naïve approach, then improve it

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the cons
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search*
- Can solve n-queens for $n \approx 25$

Backtracking Example

Backtracking Search


```
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure

if assignment is complete then return assignment

var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var = value} to assignment

result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp)

if result \neq failure then return result

remove {var = value} from assignment

return failure
```

What are the choice points?

Backtracking Search

- Kind of depth first search
- Is it complete?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
- Which variable should be assigned next?
- In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

lext: Constraint Satisfaction Problems - Part