10/8/2018

CSE 473: Atrtificial Intelligence
Autumn 2018

Heuristics & Pattern
Databases for Search

Steve Tanimoto

Recap: Search Problem

= States
= configurations of the world
= Successor function:

= function from states to lists of (state, action, cost)

Presented by Emilia Gan tiples
= Start state
With thanks to Dan Weld, Dan Klein, Richard Korf, Stuart Russell, Andrew
Moore, and Luke Zettlemoyer L Goal teSt
*With modifications from various sources (as noted on individual slides) E. Gan Fall ‘1§
States are Board Positions
N-Queens as Search?
|
/ A
= Given N x N chess board
= Can you place N queens so they don't fight? \\‘
\
\
Etc...
Search Methods IDA* for N-Queens?
= Depth first search (DFS)
= Breadth first search (BFS)
= |terative deepening depth-first search (IDS) ' W
» Best first search = Given N x N chess board B

= Uniform cost search (UCS) Ay,
* Greedy search "t g
m A* arcb
= |terative Deepening A* (IDA*)

= Beam search, hill climbing

= Stochastic Search
= Constraint Satisfaction

= Can you place N queens so they don't fight?

Cool picture from Dan Klein & Pieter Abeel ai berkeley.edu ©

10/8/2018

Best-First Search
= Generalization of breadth-first search
= Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(hode) then return node
Add children of node fo queue
P

“expanding the node” |

Greedy Best First Algorithm
Recall: BFS and DFS pick the next node off the
frontier based on which was "firstin" or "last in".

Greedy Best First picks the "best" node according to
some rule of thumb, called a heuristic.

Definition: A heuristic is an approximate measure of how
close you are to the target.

A heuristic guides you in the right direction.

https://cs.stanford.edu/people/abisee/gs.pdf

A*
* Expands the path with the lowest cost + h value on the

frontier

» The frontier is implemented as a priority queue ordered by
f(p) = cost(p) + h(p)

Admissibility of a heuristic

Def.:

Let ¢(n) denote the cost of the optimal path from node n to any
goal node. A search heuristic h(n) is called
admissible if h(n) = c(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

@ bounded depth-first search with increasing bounds

@ instead of depth we bound
(in this chapter f(n) := g(n) + h(n.state) as in A*)
~» IDA* (iterative-deepening A*)
o tree search, unlike the previous best-first search algorithms

https://ai.dmi.unibas.ch/_files/teaching/fs17/ai/slides/ai17.pdf

hnes:‘{www.cs.ubc.ca{”mackZCS322‘Ienures‘Z-SearchG.Edf

Iterative Deepening DFS (IDS) in a Nutshell

« Use DFS to look for solutions at depth 1, then 2, then 3, etc
— For depth D, ignore any paths with longer length
- Depth-bounded depth-first search

depth=1 ©

A
ijﬁi; %JQ

(Heuristic) Iterative Deepening: IDA*

« Like Iterative Deepening DFS
— But the depth bound is measured in terms of the f value

« If you don't find a solution at a given depth

— Increase the depth bound:
to the minimum of the f-values that exceeded the previous bound

10/8/2018

Iterative-Deepening A*

= Like iterative-deepening depth-first, but...
= Depth bound modified to be an f-limit

= Start with f-limit = h(start)

= Prune any node if f(node) > f-limit

= Next f-limit = min-cost of any node pruned

IDA*(Iterative Deepening A*) Search

* Perform depth-first search LIMITED to some f-
bound.

 If goal found: ok.
* Else: increase f-bound and restart.

* How to establish the f-bounds?

* -initially: f(S)

. generate all successors

. record the minimal f(succ) > f(S)

* Continue with minimal f(succ) instead of f(S)

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

path current search path (acts like a stack) function search(path, g, bound)

node current node (last node in current path) node := path.last

g the cost to reach current node

£ estimated cost of the cheapest path (root..node..goal) f := g + h(node)

h(node) estimated cost of the cheapest path (node..goal) if £ > bound then return £
cost(node, succ) step cost function if is_goal(node) then returan FOUND
is_goal(node) goal test min := ®

successors(node) node expanding function, expand nodes ordered by g + h(node)
ida_star(root) return either NOT_FOUND or a pair with the best path and its cost

procedure ida_star(root)

bound := h{root)
path := [root]
loop
t t+= search(path, 0, bound)

if t = FOUND then return (path, bound)
if t = @ then return NOT_ FOUND
bound := t
end loop
end procedure

https://en.wikipedia.org/wiki/lterative_deepening_A*

for succ in successors(node) do
if succ not in path then
path.push(succ)
t := search(path, g + cost(node, succ), bound)
if t = FOUND then return FOUND
if t < min then min := t
path.pop()
end if
end for
return min
end function

hnEs:HEn.wikiEedia.orEZWikillterative deepening A*

f-limited, f-bound = 100 ﬁ f-new =120

f-limited, f-bound = 120 p f-new = 125

10/8/2018

f-limited, f-bound = 125

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

IDA* Analysis

= Complete & Optimal (a la A¥)

= Space usage o depth of solution

= Each iteration is DFS - no priority queue!

= # nodes expanded relative to A*
= Depends on # unique values of heuristic function
= |n 8 puzzle: few values = close to # A* expands
= |n eastern-europe travel: each f value is unique

= 1+2+...4n =0(n?) where n=nodes A* expands
if n is too big for main memory, n? is too long to wait!

= (Generates duplicate nodes in cyclic graphs

o |IDA" is a tree search variant of A"
based on iterative deepening depth-first search

@ main advantage: low space complexity
o disadvantage: repeated work can be significant

@ most useful when there are few duplicates

https://ai.dmi.unibas.ch/_files/teaching/fs17/ai/slides/ai17.pdf

Beam Search

= |dea
= Best first
= But discard all but N best items on priority queue
= Evaluation
= Complete?
No
= Time Complexity?
O(brd)
= Space Complexity?
O(b+N)

H I" CI I mbl ng “Gradient ascent”
=ldea

= Always choose best child; no backtracking

= Beam search with [queue| = 1
=Problems? /‘-/'J\N\/\f\

* Local maxima

+ Plateaus R
= 1]
+ Diagonal ridges /ﬂ\\\‘
.
* L}
© Daniel S. Weld 15

HILL-CLIMBING CAN GET STUCK!

Diagonal ridges:
From each local maximum all the
available actions point downhill,
but there is an uphill path!

Zig-zag motion,
very long ascent time!

Gradient ascent doesn’t have this
issue: all state vector components are
(potentially) changed when moving to a
successor state, climbing can follow the
direction of the ridge

10/8/2018

Heuristics

It's what makes search actually work

Admissible Heuristics

= f(x) = g(x) + h(x)
» g: cost so far
= h: underestimate of remaining costs

Where do heuristics come from?

© Daniel S. Weld

Relaxed Problems

= Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
= For blocks world, distance = # move operations
= heuristic = number of misplaced blocks
= What is relaxed problem?

I — - — —
— AR j 1 = _L
out of place = 2, true distance to goal = 3

- Cost of optimal soln to relaxed problem < cost of
optimal seln for real problem
© Daniel 8. Weld 19

What's being relaxed?

Heuristic = Euclidean distance

Staght-line disance.
© Dacharat
Arad

o
1
161
Vi

151

W
m
o
i3
2
3
=
e
™

Traveling Salesman Problem

Objective: shortest path visiting every city

What can be
Relaxed?

A number of strategies -- beyond the scope of this lecture, but see:
http://www.math.chalmer: Math/Grun TH/mvel65/1112/Ls res/TSPLs re-120426.
for mare information if vou're curious

f

Heuristics for eight puzzle

7]2]3] 1]2]3]
5116 5 [4]5[6
[8]3 KK
start goal

= \What can we relax?

h1 = number of tiles in wrong place
h2 = X distances of tiles from correct loc

10/8/2018

Importance of Heuristics

h1 = number of tiles in wrong place

Iaeh»k‘

[

D DS A*(hl)
2 10 6

4 112 13

6 680 20

8§ 6384 39
10 47127 93

12 364404 227
14 3473941 539
18 3056
24 39135

Importance of Heuristics

h1 = number of tiles in wrong place

=t

EEE
o=

h2 = X distances of tiles from correct loc

D IDS A*(hl) A*(h2)
2 10 6 6
4 12 13 12
6 680 20 8
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 13
18 3056 363
24 39135 1641

Decrease effective branching factor

Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
= 24 Puzzle 65000 years

Need even better heuristics!

© Daniel S. Weld Adegred from Richard Kerk peosamatin 2>

Subgoal Interactions

= Manhattan distance assumes

= Each tile can be moved independently of others
= Underestimates because

= Doesn’t consider interactions between tiles

n

oo o
o w

1
3
[7]

@ Daniel S. Weld 26

Adogted Fram Sichord Keef gresentation

cost of the optimal solution of sub-problem
< cost of the optimal solution of complete problem

- Open Education Edinburgh
Y Published on Feb 26,2014

https://www.youtube.com/watch?v=HZWV4uOJWk8

Pattern Databases

« idea: pre-compute and store the solution costs for all
possible sub-problems in database

« computing heuristic = DB lookup

« construct DB by searching backwards from the goal
state and recording costs

— very expensive operation, but needs to be computed only
once

§- Open Education Edinburgh
g4): Published on Feb 26,2014

https://www.youtube.com/watch?v=HZWV4uOJWk8

10/8/2018

Pattern Databases Using a Pattern Database
[€ulberson & Schaeffer 1996]
: ’ 112(3]4 :
= Pick any subset of tiles 576 1718 = As each state is generated
"Eg.3,7,11,12,13,14,15 12 = Use position of chosen tiles as index into DB
= (or as drawn) . = Use lookup value as heuristic, h(n)
= Precompute a table
= Optimal cost of solving just these tiles = Admissible?
= For all possible configurations
= 57 Million in this case
= Use A* or IDA*
= State = position of just these tiles (& blank)
@ Daniel S. Weld Rk b i 27 @® Daniel 5. Weld it ot A B mssavitnn 28

Combining Multiple Databases

- 12374 Efficiency Many small pattern databases
= Can choose another set of tiles | 5115 . -
= Precompute multiple tables 9100112 Time for the preprocessing to create a PDB

S,
= How combine table values? 1314 fis [l e s vl i V N
heuristic.
= E.g. Optimal solutions to Rubik's cube E ! E ! !] I I

hy(s) e (5)
= First found w/ IDA* using pattern DB heuristics Memory is the limiting factor. %,-—B

= Multiple DBs were used (dif cubie subsets) — max =
= Most problems solved optimally in 1 day =] L=
= Compare with 574,000 years for IDDFS
© Danial 5. Weld adaptes from ichard Keet presentarion 2
hnEs:“wehdocs.cs.uaIberta.ca["huIteZCMPUTESIZEdb20041031.Edf
Drawbacks of Standard Pattern DBs
— = Since we can only take max
Rubik’s Cube i = Diminishing returns on additional DBs
State Space Bestn Ratio
[n (3x3)puzzie 10 3.85
? ase :
] YT e I T = Would like to be able to add values
4 (8,4)-Topspin (Bops) | 8 2089
2 (@xd)puzzie 21+ | 1885
: Rubik's Cube L] 23.28
15-puzzie (additive) 5 2.38
24-puzzle (additive) 8 1.6 10 25.1
#nodes generated using one PDB of sze M
L!Zj RATIO = o Generatad Uaing 1 FOBE of 828 Wi =
© Daniel S. Weld hmnnideicbaciiort - 30
hrtEs:“webdocs.cs.uaIberta.caZ”holte[CMPUTGS1£Edb20041031.gdf Ee

10/8/2018

Disjoint Pattern DBs

@ 5

= Partition tiles into disjoint sets

ol o=
o
~

1011112
13(14 |15

= For each set, precompute table
= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million

= During search
= Look up heuristic values for each set
= Can add values without overestimating!

= Manhattan distance is a special case of this idea
where each set is a single tile

® Daniel S. Weld Adepted feom Richard Kac presertaticn, 2y

Performance

= 15 Puzzle: 2000x speedup vs Manhattan dist

= |DA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
= |DA* can solve random instances in 2 days.
= Requires 4 DBs as shown

= Each DB has 128 million entries
= Without PDBs: 65,000 years

© Daniel S. Weld Adpted fromichord vorfresennen o2

