CSE 473: Artificial Intelligence
Autumn 2018

Constraint Satisfaction Problems - Part 2

Steve Tanimoto

les from :
ox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Improving Backtracking

eneral-purpose ideas give huge gains in speed

rdering:
Which variable should be assigned next?
In what order should its values be tried?

ltering: Can we detect inevitable failure early? — —

ructure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

ltering: Keep track of domains for unassigned variables and cross off bad options

yrward checking: Cross off values that violate a constraint when added to the exis
signment

NT| Q

SA NSW.
v

WA

WA NT Q NSW \' SA

[Demo: coloring -- forwarc

0 of Demo Coloring — Backtracking with Forward Chec

Filtering: Constraint Propagation

yrward checking only propagates information from assigned to unassigned
doesn't catch when two unassigned variables have no consistent assignment:

WA NT Q NSW \' SA
\ﬂ* I I e ireriren
‘ A P | "EErEErE/ErE] "n]
N L 1B Il B LD I)

I and SA cannot both be blue!
'hy didn’t we detect this yet?
nstraint propagation: reason from constraint to constraint

Consistency of a Single Arc

1 arc X — Y is consistent iff for every x in the tail there is some y in the head whict
uld be assigned without violating a constraint

L

WA NT Q NSW \' SA

=) s P EESE[EEE RS E[EDE

NSW

bvat

NT
SA

Delete from the tail!

yrward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

simple form of propagation makes sure all arcs are consistent:

NT Q WA NT Q NSW \' SA
‘ ey mmm]| mjwe | el =
V

1portant: If X loses a value, neighbors of X need to be rechecked!
c consistency detects failure earlier than forward checking '
i Remember: Delete
an be run as a preprocessor or after each assignment from the taill
'hat’s the downside of enforcing arc consistency? '

AC-3 algorithm for Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xo, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «+— false
for each z in DoMAIN[X]] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; «» X
then delete = from DOMAIN[X]; removed «— true
return removed

= Runtime: O(n%d3), can be reduced to O(n%d?)
= .. but detecting all possible future problems is NP-hard —why?

[Demo: CSP applet (made available by aispace.org) -- r

Limitations of Arc Consistency

= After enforcing arc o
consistency: ‘

= Can have one solution left

" Can have multiple solutions left

" Can have no solutions left (and ®
not know it) ‘

" Arc consistency still runs Whot went
IS ' here?
inside a backtracking search! wrong here

.

[Demo: coloring -- forward cl
[Demo: coloring -- arc consis

K-Consistency

K-Consistency

\Icreasing degrees of consistency

' 1-Consistency (Node Consistency): Each single node’s domain has a value Q
which meets that node’s unary constraints

' 2-Consistency (Arc Consistency): For each pair of nodes, any consistent O =) Q
assignment to one can be extended to the other

'+ K-Consistency: For each k nodes, any consistent assignment to k-1 can be @

extended to the k™ node.
<Or= O

igher k more expensive to compute

‘ou need to know the algorithm for k=2 case: arc consistency) ®

Strong K-Consistency

rong k-consistency: also k-1, k-2, ... 1 consistent

aim: strong n-consistency means we can solve without backtracking!

'hy?
Choose any assignment to any variable

Choose a new variable

By 2-consistency, there is a choice consistent with the first
Choose a new variable

By 3-consistency, there is a choice consistent with the first 2

ts of middle ground between arc consistency and n-consistency! (e.g. k=3, called
3th consistency)

20 of Demo Arc Consistency — CSP Applet — n Que

> of Demo Coloring — Backtracking with Forward Check
Complex Graph

0 of Demo Coloring — Backtracking with Arc Consisten
Complex Graph

Ordering

Ordering: Minimum Remaining Values

ariable Ordering: Minimum remaining values (MRV):

' Choose the variable with the fewest legal left values in its domain

A

\1

/hy min rather than max?
Iso called “most constrained variable”
-ail-fast” ordering

Ordering: Maximum Degree

ie-breaker among MRV variables
- What is the very first state to color? (All have 3 values remaining.)

laximum degree heuristic:

' Choose the variable participating in the most constraints on remainii
variables

7\

L

/hy most rather than fewest constraints?

Ordering: Least Constraining Value

alue Ordering: Least Constraining Value & *
' Given a choice of variable, choose the least ‘_Lt

constraining value (h
' |.e., the one that rules out the fewest values in “_Lt

the remaining variables

' Note that it may take some computation to ‘
determine this! (E.g., rerunning filtering)

Vhy least rather than most?

ombining these ordering ideas makes
000 queens feasible

Rationale for MRV, MD, LCV

/e want to enter the most promising branch, but we also war
) detect failure quickly

IRV+MD:

' Choose the variable that is most likely to cause failure

|t must be assigned at some point, so if it is doomed to fail, better to
find out soon

CV:
' We hope our early value choices do not doom us to failure
' Choose the value that is most likely to succeed

Structure

Problem Structure

xtreme case: independent subproblems

' Example: Tasmania and mainland do not interact m "e
\dependent subproblems are identifiable as SA -
onnected components of constraint graph

uppose a graph of n variables can be broken into

ibproblems of only c variables: @
' Worst-case solution cost is O((n/c)(d)), linear in n

' E.g.,n=80,d=2,c=20

1 280 = 4 billion years at 10 million nodes/sec
'+ (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

A E)
(80
C F)

yeorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
Compare to general CSPs, where worst-case time is O(d")

\is property also applies to probabilistic reasoning (later): an example of the relati
xtween syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

Igorithm for tree-structured CSPs:
' Order: Choose a root variable, order variables so that parents precede children

S ol mh

' Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X:),X)
' Assign forward: For i =1 :n, assign X, consistently with Parent(X))

untime: O(n d?) (why?)

Tree-Structured CSPs

laim 1: After backward pass, all root-to-leaf arcs are consistent

roof: Each X—Y was made consistent at one point and Y’s domain could not have
een reduced thereafter (because Y’s children were processed before Y)

laim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
roof: Induction on position

/hy doesn’t this algorithm work with cycles in the constraint graph?

ote: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

onditioning: instantiate a variable, prune its neighbors' domains

utset conditioning: instantiate (in all ways) a set of variables such that
1e remaining constraint graph is a tree

utset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

o 1R

()
!
()

Choose a cutset

@b

d

T~

nstantlate the cutset J o /
(aII possible ways) ()
@“

@vo@ @‘@

! !

.

9‘@‘9
A

ompute residual CSP
for each assignment

lee the residual CSPs
(tree structured)

%

et

4—

Cutset Quiz

ind the smallest cutset for the graph below.
G } K

G ©

E (¢) M

Local Search for CSPs

Iterative Algorithms for CSPs

)cal search methods typically work with “complete” states, i.e., all variables assigr

) apply to CSPs:
Take an assignment with unsatisfied constraints

Operators reassign variable values ‘_‘ — > H

No fringe! Live on the edge.

gorithm: While not solved,
Variable selection: randomly select any conflicted variable

Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

L ¥

= o
E R =

h=2 h=0

-

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improveme
[Demo: coloring — iterative improvemen

Performance of Min-Conflicts

iven random initial state, can solve n-queens in almost constant time for arbitrary
with high probability (e.g., n =10,000,000)!

he same appears to be true for any randomly-generated CSP except in a narrow
inge of the ratio

o number of constraints N
number of variables V
CPU
time

)

|
critical
ratio

Summary: CSPs

SPs are a special kind of search problem:
' States are partial assignments
* Goal test defined by constrai

M
asic solution: backtracking sea
peed-ups: Ty a WA |
' Ordering “‘*

' Filtering
' Structure

erative min-conflicts is often effective in practice

