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Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?



Filtering



Filtering: Keep track of domains for unassigned variables and cross off bad options
Forward checking: Cross off values that violate a constraint when added to the existing 
assignment

Filtering: Forward Checking
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[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking



Filtering: Constraint Propagation

Forward checking only propagates information from assigned to unassigned
It doesn't catch when two unassigned variables have no consistent assignment:

NT and SA cannot both be blue!
Why didn’t we detect this yet?
Constraint propagation: reason from constraint to constraint
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Consistency of a Single Arc

An arc X  Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!
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Arc Consistency of an Entire CSP
A simple form of propagation makes sure all arcs are consistent:

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment 
What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!
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AC-3 algorithm for Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n



Limitations of Arc Consistency

 After enforcing arc 
consistency:
 Can have one solution left
 Can have multiple solutions left
 Can have no solutions left (and 

not know it)

 Arc consistency still runs 
inside a backtracking search!

What went 
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]



K-Consistency



K-Consistency
Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a value 
which meets that node’s unary constraints

 2-Consistency (Arc Consistency): For each pair of nodes, any consistent 
assignment to one can be extended to the other

 K-Consistency: For each k nodes, any consistent assignment to k-1 can be 
extended to the kth node.

Higher k more expensive to compute

(You need to know the algorithm for k=2 case: arc consistency)



Strong K-Consistency

Strong k-consistency: also k-1, k-2, … 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
 Choose any assignment to any variable
 Choose a new variable
 By 2-consistency, there is a choice consistent with the first
 Choose a new variable
 By 3-consistency, there is a choice consistent with the first 2
 …

Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called 
path consistency)



Video of Demo Arc Consistency – CSP Applet – n Queens



Video of Demo Coloring – Backtracking with Forward Checking 
Complex Graph



Video of Demo Coloring – Backtracking with Arc Consistency 
Complex Graph



Ordering



Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
 Choose the variable with the fewest legal left values in its domain

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering



Tie-breaker among MRV variables
 What is the very first state to color? (All have 3 values remaining.)

Maximum degree heuristic:
 Choose the variable participating in the most constraints on remaining 

variables

Why most rather than fewest constraints?

Ordering: Maximum Degree



Ordering: Least Constraining Value

Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least 

constraining value
 I.e., the one that rules out the fewest values in 

the remaining variables
 Note that it may take some computation to 

determine this!  (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible



Rationale for MRV, MD, LCV

We want to enter the most promising branch, but we also want 
to detect failure quickly
MRV+MD:
 Choose the variable that is most likely to cause failure
 It must be assigned at some point, so if it is doomed to fail, better to 

find out soon

LCV:
 We hope our early value choices do not doom us to failure
 Choose the value that is most likely to succeed



Structure



Problem Structure

Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as 
connected components of constraint graph

Suppose a graph of n variables can be broken into 
subproblems of only c variables:
 Worst-case solution cost is O((n/c)(dc)), linear in n
 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 Compare to general CSPs, where worst-case time is O(dn)

This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Runtime: O(n d2)  (why?)



Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each XY was made consistent at one point and Y’s domain could not have 
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure



Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that 
the remaining constraint graph is a tree

Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz

Find the smallest cutset for the graph below.



Local Search for CSPs



Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned

To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe!  Live on the edge.

Algorithm: While not solved,
 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]



Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary 
n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio



Summary: CSPs

CSPs are a special kind of search problem:
 States are partial assignments
 Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
 Ordering
 Filtering
 Structure

Iterative min-conflicts is often effective in practice


