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CSE 473: Artificial Intelligence
Hidden Markov Models

Steve Tanimoto --- University of Washington
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 As a Bayes’ net:
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Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Hidden Markov Models

 Defines a joint probability distribution:
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Ghostbusters HMM
 P(X1) = uniform
 P(X’|X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
 P(E|X) = same sensor model as before:red means close, green means far away.
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HMM Computations
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)
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Real HMM Examples
 Speech recognition HMMs:

 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of thousands)
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Real HMM Examples
 Machine translation HMMs:

 Observations are words (tens of thousands)
 States are translation options
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Real HMM Examples
 Robot tracking:

 Observations are range readings (continuous)
 States are positions on a map (continuous)
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state

 Quiz: does this mean that observations are independent given no evidence?
 [No, correlated by the hidden state]
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Filtering / Monitoring
 Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) over time
 We start with B(X) in an initial setting, usually uniform
 As time passes, or we get observations, we update B(X)

 The Kalman filter (one method – Real valued values)
 invented in the 60’s as a method of trajectory estimation for the Apollo program

Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer

Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob

Example: Robot Localization

t=2
10Prob

Example: Robot Localization

t=3
10Prob

Example: Robot Localization

t=4
10Prob
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Example: Robot Localization

t=5
10Prob

Inference Recap: Simple Cases
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Online Belief Updates
 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

 The forward algorithm does both at once (and doesn’t normalize)
 Problem: space is |X| and time is |X|2 per time step
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Passage of Time
 Assume we have current belief P(X | evidence to date)
 Then, after one time step passes:

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

X2X1

Example: Passage of Time
 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

Observation
 Assume we have current belief P(X | previous evidence):

 Then:

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence
 Unlike passage of time, we have to renormalize

E1

X1
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Example: Observation
 As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

The Forward Algorithm
 We want to know:
 We can derive the following updates

 To get               , compute each entry and normalize

Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example HMM

Example Pac-man Summary: Filtering
 Filtering is the inference process of finding a distribution over XT given e1 through eT : P( XT | e1:t )
 We first compute P( X1 | e1 ):
 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 
 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )
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Recap: Reasoning Over Time
 Stationary Markov models
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 Hidden Markov models

Recap: Filtering
 Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>
Belief: <P(rain), P(sun)>

<0.82, 0.18>
<0.63, 0.37>
<0.88, 0.12>

Prior on X1
Observe
Elapse time
Observe

Particle Filtering
 Sometimes |X| is too big to use exact inference

 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in practice
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Representation: Particles
 Our representation of P(X) is now a list of N particles (samples)

 Generally, N << |X|
 Storing map from X to counts would defeat the point

 P(x) approximated by number of particles with value x
 So, many x will have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time
 Each particle is moved by sampling its next position from the transition model

 This is like prior sampling – samples’ frequencies reflect the transition probs
 Here, most samples move clockwise, but some move in another direction or stay in place

 This captures the passage of time
 If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe
 Slightly trickier:

 Don’t do rejection sampling (why not?)
 We don’t sample the observation, we fix it
 This is similar to likelihood weighting, so we downweight our samples based on the evidence

 Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))
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Particle Filtering: Resample
 Rather than tracking weighted samples, we resample
 N times, we choose from our weighted sample distribution (i.e. draw with replacement)
 This is equivalent to renormalizing the distribution
 Now the update is complete for this time step, continue with the next one

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1) w=0.9
(3,2) w=0.3

New Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
Initialization: Sample from prior, reweight and resample
Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

2. Reweight: for each particle, compute its weight given the actual observation e

• Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Particle Filtering Summary
 Represent current belief P(X | evidence to date) as set of n samples (actual 

assignments X=x)
 For each new observation e:

1. Sample transition, once for each current particle x

2. For each new sample x’, compute importance weights for the new 
evidence e:

3. Finally, normalize the importance weights and resample N new particles 

Robot Localization
 In robot localization:

 We know the map, but not the robot’s position
 Observations may be vectors of range finder readings
 State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 Particle filtering is a main technique

Robot Localization

QuickTime™ and aGIF decompressorare needed to see this picture.

Which Algorithm?
Exact filter, uniform initial beliefs
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Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

P4: Ghostbusters
 Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.  
 He was blinded by his power, but could hear the ghosts’ banging and clanging.
 Transition Model: All ghosts move randomly, but are sometimes biased

 Emission Model: Pacman knows a “noisy” distance to each ghost

15
13
11

9
7
5
3
1

Noisy distance prob
True distance = 8

Dynamic Bayes Nets (DBNs)
 We want to track multiple variables over time, using multiple sources of evidence
 Idea: Repeat a fixed Bayes net structure at each time
 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs

G1a

E1a E1b

G1b
G2a

E2a E2b

G2b

t =1 t =2

G3a

E3a E3b

G3b

t =3

Exact Inference in DBNs
 Variable elimination applies to dynamic Bayes nets
 Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

G1a

E1a E1b

G1b
G2a

E2a E2b

G2b
G3a

E3a E3b

G3b

t =1 t =2 t =3

G3b

DBN Particle Filters
 A particle is a complete sample for a time step
 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1a = (3,3) G1b = (5,3) 
 Elapse time: Sample a successor for each particle 

 Example successor: G2a = (2,3) G2b = (6,3)
 Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample

 Likelihood: P(E1a |G1a ) * P(E1b |G1b ) 
 Resample: Select prior samples (tuples of values) in proportion to their likelihood
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SLAM
 SLAM = Simultaneous Localization And Mapping

 We do not know the map or our location
 Our belief state is over maps and positions!
 Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

 [DEMOS]

DP-SLAM, Ron Parr

Best Explanation Queries

 Query: most likely seq:
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State Path Trellis
 State trellis: graph of states and transitions over time

 Each arc represents some transition
 Each arc has weight
 Each path is a sequence of states
 The product of weights on a path is the seq’s probability
 Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph
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Viterbi Algorithm
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Example
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