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CSE 473: Artificial Intelligence
Hidden Markov Models

Steve Tanimoto --- University of Washington
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 As a Bayes’ net:
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Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Hidden Markov Models

 Defines a joint probability distribution:
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Ghostbusters HMM
 P(X1) = uniform
 P(X’|X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
 P(E|X) = same sensor model as before:red means close, green means far away.
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HMM Computations
 Given 

 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)



2

Real HMM Examples
 Speech recognition HMMs:

 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of thousands)
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Real HMM Examples
 Machine translation HMMs:

 Observations are words (tens of thousands)
 States are translation options
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Real HMM Examples
 Robot tracking:

 Observations are range readings (continuous)
 States are positions on a map (continuous)
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence
 HMMs have two important independence properties:

 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state

 Quiz: does this mean that observations are independent given no evidence?
 [No, correlated by the hidden state]
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Filtering / Monitoring
 Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) over time
 We start with B(X) in an initial setting, usually uniform
 As time passes, or we get observations, we update B(X)

 The Kalman filter (one method – Real valued values)
 invented in the 60’s as a method of trajectory estimation for the Apollo program

Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from Michael Pfeiffer

Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

10Prob

Example: Robot Localization

t=2
10Prob

Example: Robot Localization

t=3
10Prob

Example: Robot Localization

t=4
10Prob
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Example: Robot Localization

t=5
10Prob

Inference Recap: Simple Cases
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Online Belief Updates
 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

 The forward algorithm does both at once (and doesn’t normalize)
 Problem: space is |X| and time is |X|2 per time step
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Passage of Time
 Assume we have current belief P(X | evidence to date)
 Then, after one time step passes:

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

X2X1

Example: Passage of Time
 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

Observation
 Assume we have current belief P(X | previous evidence):

 Then:

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence
 Unlike passage of time, we have to renormalize

E1

X1
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Example: Observation
 As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

The Forward Algorithm
 We want to know:
 We can derive the following updates

 To get               , compute each entry and normalize

Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example HMM

Example Pac-man Summary: Filtering
 Filtering is the inference process of finding a distribution over XT given e1 through eT : P( XT | e1:t )
 We first compute P( X1 | e1 ):
 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 
 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )
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Recap: Reasoning Over Time
 Stationary Markov models
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 Hidden Markov models

Recap: Filtering
 Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>
Belief: <P(rain), P(sun)>

<0.82, 0.18>
<0.63, 0.37>
<0.88, 0.12>

Prior on X1
Observe
Elapse time
Observe

Particle Filtering
 Sometimes |X| is too big to use exact inference

 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in practice

0.0 0.1

0.0 0.0
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0.2

0.0 0.2 0.5

Representation: Particles
 Our representation of P(X) is now a list of N particles (samples)

 Generally, N << |X|
 Storing map from X to counts would defeat the point

 P(x) approximated by number of particles with value x
 So, many x will have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time
 Each particle is moved by sampling its next position from the transition model

 This is like prior sampling – samples’ frequencies reflect the transition probs
 Here, most samples move clockwise, but some move in another direction or stay in place

 This captures the passage of time
 If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe
 Slightly trickier:

 Don’t do rejection sampling (why not?)
 We don’t sample the observation, we fix it
 This is similar to likelihood weighting, so we downweight our samples based on the evidence

 Note that, as before, the probabilities don’t sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))
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Particle Filtering: Resample
 Rather than tracking weighted samples, we resample
 N times, we choose from our weighted sample distribution (i.e. draw with replacement)
 This is equivalent to renormalizing the distribution
 Now the update is complete for this time step, continue with the next one

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1) w=0.9
(3,2) w=0.3

New Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
Initialization: Sample from prior, reweight and resample
Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

2. Reweight: for each particle, compute its weight given the actual observation e

• Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Particle Filtering Summary
 Represent current belief P(X | evidence to date) as set of n samples (actual 

assignments X=x)
 For each new observation e:

1. Sample transition, once for each current particle x

2. For each new sample x’, compute importance weights for the new 
evidence e:

3. Finally, normalize the importance weights and resample N new particles 

Robot Localization
 In robot localization:

 We know the map, but not the robot’s position
 Observations may be vectors of range finder readings
 State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 Particle filtering is a main technique

Robot Localization

QuickTime™ and aGIF decompressorare needed to see this picture.

Which Algorithm?
Exact filter, uniform initial beliefs
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Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

P4: Ghostbusters
 Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.  
 He was blinded by his power, but could hear the ghosts’ banging and clanging.
 Transition Model: All ghosts move randomly, but are sometimes biased

 Emission Model: Pacman knows a “noisy” distance to each ghost

15
13
11

9
7
5
3
1

Noisy distance prob
True distance = 8

Dynamic Bayes Nets (DBNs)
 We want to track multiple variables over time, using multiple sources of evidence
 Idea: Repeat a fixed Bayes net structure at each time
 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs

G1a

E1a E1b

G1b
G2a

E2a E2b

G2b

t =1 t =2

G3a

E3a E3b

G3b

t =3

Exact Inference in DBNs
 Variable elimination applies to dynamic Bayes nets
 Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only
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G1b
G2a

E2a E2b

G2b
G3a

E3a E3b

G3b

t =1 t =2 t =3

G3b

DBN Particle Filters
 A particle is a complete sample for a time step
 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1a = (3,3) G1b = (5,3) 
 Elapse time: Sample a successor for each particle 

 Example successor: G2a = (2,3) G2b = (6,3)
 Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample

 Likelihood: P(E1a |G1a ) * P(E1b |G1b ) 
 Resample: Select prior samples (tuples of values) in proportion to their likelihood
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SLAM
 SLAM = Simultaneous Localization And Mapping

 We do not know the map or our location
 Our belief state is over maps and positions!
 Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

 [DEMOS]

DP-SLAM, Ron Parr

Best Explanation Queries

 Query: most likely seq:
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State Path Trellis
 State trellis: graph of states and transitions over time

 Each arc represents some transition
 Each arc has weight
 Each path is a sequence of states
 The product of weights on a path is the seq’s probability
 Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph
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Viterbi Algorithm
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Example
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