CSE 473: Artificial Intelligence

Markov Models

Steve Tanimoto --- University of Washington

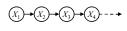
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.ed

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Models

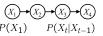
• Value of X at a given time is called the state



$$P(X_1)$$
 $P(X_t|X_{t-1})$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model



Joint distribution:

 $P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$

More generally:

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$

$$= P(X_1) \prod_{t=2}^{T} P(X_t | X_{t-1})$$

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

lacktriangledown From the chain rule, every joint distribution over X_1,X_2,X_3,X_4 can be written as:

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2|X_1)P(X_3|\underline{X_1}, X_2)P(X_4|\underline{X_1}, X_2, X_3)$$

Assuming that

$$X_3 \perp\!\!\!\perp X_1 \mid X_2$$
 and $X_4 \perp\!\!\!\perp X_1, X_2 \mid X_3$

simplifies to the expression posited on the previous slide:

$$P(X_1,X_2,X_3,X_4) = P(X_1)P(X_2|X_1)P(X_3|X_2)P(X_4|X_3)$$

Chain Rule and Markov Models

lacktriangledown From the chain rule, every joint distribution over X_1,X_2,\ldots,X_T can be written as:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=1}^{T} P(X_t | X_1, X_2, \dots, X_{t-1})$$

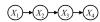
Assuming that for all t:

$$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$$

simplifies to the expression posited on the earlier slide:

$$P(X_1, X_2, \dots, X_T) = P(X_1) \prod_{t=2}^{T} P(X_t | X_{t-1})$$

Implied Conditional Independencies



- We assumed: $X_3 \perp \!\!\! \perp X_1 \mid X_2$ and $X_4 \perp \!\!\! \perp X_1, X_2 \mid X_3$
- Do we also have $X_1 \perp \!\!\! \perp X_3, X_4 \mid X_2$?
 - Yes!
 - $$\begin{split} P(X_1 \mid X_2, X_3, X_4) &= \frac{P(X_1, X_2, X_3, X_4)}{P(X_2, X_3, X_4)} \\ &= \frac{P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_2)P(X_4 \mid X_3)}{\sum_{x_1} P(x_1)P(X_2 \mid x_1)P(X_3 \mid X_2)P(X_4 \mid X_3)} \end{split}$$
 ■ Proof: $= P(X_1 \mid X_2)$

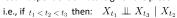
Markov Models Recap

- Explicit assumption for all $t: X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:

$$\begin{split} P(X_1, X_2, \dots, X_T) &= P(X_1) P(X_2 | X_1) P(X_3 | X_2) \dots P(X_T | X_{T-1}) \\ &= P(X_1) \prod_{T} P(X_t | X_{t-1}) \end{split}$$

Implied conditional independencies:

Past independent of future given the present



■ Additional explicit assumption: $P(X_t \mid X_{t-1})$ is the same for all t

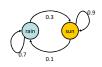
Example Markov Chain: Weather

- States: X = {rain, sun}
- Initial distribution: 1.0 sun
- CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	P(X, X, 1)
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather

Initial distribution: 1.0 sun



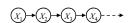
• What is the probability distribution after one step?

$$P(X_2 = sun) = P(X_2 = sun|X_1 = sun)P(X_1 = sun) + P(X_2 = sun|X_1 = rain)P(X_1 = rain)$$

$$0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Mini-Forward Algorithm

• Question: What's P(X) on some day t?



 $P(x_1) = known$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$

Example Run of Mini-Forward Algorithm

• From initial observation of sun

$$\begin{pmatrix} 1.0 \\ 0.0 \end{pmatrix} & \begin{pmatrix} 0.9 \\ 0.1 \end{pmatrix} & \begin{pmatrix} 0.84 \\ 0.16 \end{pmatrix} & \begin{pmatrix} 0.804 \\ 0.196 \end{pmatrix} \longrightarrow \begin{pmatrix} 0.75 \\ 0.25 \end{pmatrix}$$

$$P(X_1) \qquad P(X_2) \qquad P(X_3) \qquad P(X_4) \qquad P(X_n)$$

• From initial observation of rain

■ From yet another initial distribution P(X₁):

$$\left\langle \begin{array}{c} p \\ 1-p \\ P(X_1) \end{array} \right\rangle \qquad \dots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \\ P(X_\infty) \end{array} \right\rangle$$

