Uncertain Outcomes

Most of these slides originate from... Dan Klein and Pieter Abbeel.

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn’t we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)
Expectimax Pseudocode

```python
def value(state):
    if the state is a terminal state: return the state’s utility
    if the next agent is MAX: return max-value(state)
    if the next agent is EXP: return exp-value(state)

def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, value(successor))
    return v

def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```

Expectimax Pseudocode

```python
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

 Example: Traffic on freeway
 - Random variable: T = whether there’s traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one

- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We’ll talk about methods for reasoning and updating probabilities later

Reminder: Expectations

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

 Example: How long to get to the airport?
 - Time: 20 min, 30 min, 60 min
 - Probability: 0.25, 0.50, 0.25
 - Expected time: 0.25 * 20 + 0.50 * 30 + 0.25 * 60 = 35 min

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave.
- Model could be a simple uniform distribution (roll a die)
- Model could be sophisticated and require a great deal of computation
- We have a chance node for any outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
 - To figure out each chance node’s probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
- Assuming chance when the world is adversarial

Dangerous Pessimism
- Assuming the worst case when it’s not likely
Assumptions vs. Reality

<table>
<thead>
<tr>
<th></th>
<th>Adversarial Ghost</th>
<th>Random Ghost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax Pacman</td>
<td>Won 5/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td>Avg. Score: 483</td>
<td></td>
<td>Avg. Score: 483</td>
</tr>
<tr>
<td>Expectimax Pacman</td>
<td>Won 1/5</td>
<td>Won 5/5</td>
</tr>
<tr>
<td>Avg. Score: -303</td>
<td></td>
<td>Avg. Score: 503</td>
</tr>
</tbody>
</table>

Results from playing 5 games.

Pacman used depth 4 search with an eval function that avoids trouble.
Ghost used depth 2 search with an eval function that seeks Pacman.

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

Other Game Types
Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra “random agent” player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Example: Backgammon

- Dice rolls increase: 21 possible rolls with 2 dice
- Backgammon = 20 legal moves
- Depth 2 = 20 x (21 x 20) = 1.2 x 10^9
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Utilities

- For worst-case minimax reasoning, terminal function scale doesn’t matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum-expected utility:
 - A rational agent should choose the action that maximizes its expected utility, given its knowledge
- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging even makes sense?
 - What if our behavior (preferences) can’t be described by utilities?
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent’s preferences.
- Where do utilities come from?
 - In a game, may be simple (+1/-1).
 - Utilities summarize the agent’s goals.
 - Theorem: Any "rational" preferences can be summarized as a utility function.
- We hard-wire utilities and let behaviors emerge.
 - Why don’t we let agents pick utilities?
 - Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes

- Preferences
 - An agent must have preferences among:
 - Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes
 \[L = [p, A; 1 - p, B] \]
 - Notation:
 - Preference: \(A > B \)
 - Indifference: \(A \sim B \)

Preferences

- We want some constraints on preferences before we call them rational, such as:

 Axiom of Transitivity: \((A > B) \land (B > C) \Rightarrow (A > C)\)

 - For example: an agent with intransitive preferences can be induced to give away all of its money.
 - If \(B > C \), then an agent with \(C \) would pay (say) 1 cent to get \(B \).
 - If \(A > B \), then an agent with \(B \) would pay (say) 1 cent to get \(A \).
 - If \(C > A \), then an agent with \(A \) would pay (say) 1 cent to get \(C \).

Rationality

- The Axioms of Rationality

- Theorem: Rational preferences imply behavior describable as maximization of expected utility.
Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

 $$ U(A) \geq U(B) \iff A \succeq B $$

 $$ U([p_1, S_1; \ldots, p_n, S_n]) = \sum p_i U(S_i) $$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!

Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Utilities

Utility Scales

- Normalized utilities: $u_+ = 1.0, u_- = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

 $$ U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0 $$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - Compare a prize A to a standard lottery L_p between
 - “best possible prize” u_+ with probability p
 - “worst possible catastrophe” u_- with probability $1-p$
 - Adjust lottery probability p until indifference: $A \sim L_p$
 - Resulting p is a utility in $[0,1]$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery $L = [p, S; (1-p), Y]$
 - The expected monetary value $EMV(L) = pS + (1-p)Y$
 - $U(L) = pU(S) + (1-p)U(Y)$
 - Typically, $U(L) < EMV(L)$
 - In this sense, people are risk-averse
 - When deep in debt, people are risk-prone

Example: Insurance

- Consider the lottery $[0.5, \$1000; 0.5, \$0]$
 - What is its expected monetary value? \$500
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There’s an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
 - If it’s win-win, you’d rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)
Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8, $4k; 0.2, $0]
 - B: [1.0, $3k; 0.0, $0]
 - C: [0.2, $4k; 0.8, $0]
 - D: [0.25, $3k; 0.75, $0]

- Most people prefer B > A, C > D

- But if \(U(\$0) = 0 \), then
 - \(B > A \iff U(\$3k) > 0.8 U(\$4k) \)
 - \(C > D \iff 0.8 U(\$4k) > U(\$3k) \)

Next Time: MDPs!