

Mixed Layer Types ■ E.g. Backgammon Expectiminimax • Environment is an extra "random agent" player that moves after each min/max agent computes the

Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
- Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - · So usefulness of search is diminished
 - · So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st Al world champion in any game!

Multi-Agent Utilities What if the game is not zero-sum, or has multiple players? Generalization of minimax: Terminals have utility tuplesNode values are also utility tuples Each player maximizes its own component Can give rise to cooperation and competition dynamically... 1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:

Each node

appropriate

combination of its

- Where do utilities come from?
- How do we know such utilities even exist?
- How do we know that averaging even makes sense?
- What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

MEU Principle

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Utility Scales

- Normalized utilities: u₊ = 1.0, u₁ = 0.0
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear

$$U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0$$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities Utilities map states to real numbers. Which numbers? Standard approach to assessment (elicitation) of human utilities: ■ Compare a prize A to a standard lottery L_p between • "best possible prize" u, with probability p ■ "worst possible catastrophe" u_ with probability 1-p Adjust lottery probability p until indifference: A ~ L_p Resulting p is a utility in [0,1] 0.999999 0.000001 Pay \$30 Instant death No change

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
- The expected monetary value EMV(L) is p*X + (1-p)*Y
- U(L) = p*U(\$X) + (1-p)*U(\$Y) ■ Typically, U(L) < U(EMV(L))
- In this sense, people are risk-averse
- When deep in debt, people are risk-prone

Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 \$400 for most people
- Difference of \$100 is the insurance premium There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance
- It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is flat and they have many lotteries)

Example: Human Rationality?

- Famous example of Allais (1953)
 - A: [0.8, \$4k; 0.2, \$0] (= B: [1.0, \$3k; 0.0, \$0]

 - C: [0.2, \$4k; 0.8, \$0] D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- But if U(\$0) = 0, then
 B > A ⇒ U(\$3k) > 0.8 U(\$4k)
 C > D ⇒ 0.8 U(\$4k) > U(\$3k)

Next Time: MDPs!	