CSE 473: Artificial Intelligence
Autumn 2018

Heuristics & Pattern
Databases for Search

Steve Tanimoto

Presented by Emilia Gan

With thanks to Dan Weld, Dan Klein, Richard Korf, Stuart Russell, Andrew
Moore, and Luke Zettlemoyer

*With modifications from various sources (as noted on individual slides) E. Gan Fall ‘18

Recap: Search Problem

= Nl d s
= Stlatles
= configurations of the world

= Successor function:

= function from states to lists of (state, action, cost)
triples

= Start state
= Goal test

N-Queens as Search?

w G//me

= Given N x N chess board
= Can you place N queens so they don't fight?

States are Board Positions

ey
/

Search Methods
= Depth first search (DFS)
= Breadth first search (BFS)
= |terative deepening depth-first search (IDS)

= Best first search

= Uniform cost search (UCS) Koy,

= Greedy search St g

. A* Ve,
= |terative Deepening A* (IDA¥)

= Beam search, hill climbing

= Stochastic Search
= Constraint Satisfaction

IDA* for N-Queens?

= Given N x N chess board m

= Can you place N queens so they don't fight?

Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu 6

Best-First Search

= Generalization of breadth-first search
* Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)

If goal?(node) then return node

Add children of node to queue
™~

“expanding the node” .

Greedy Best First Algorithm 7

© Recall: BFS and DFS pick the next node off the
frontier based on which was "first in" or "last in".

© Greedy Best First picks the "best" node according to
some rule of thumb, called a heuristic.

__

. Definition: A heuristic is an approximate measure of how
. close you are to the target.

A heuristic guides you in the right direction.

https://cs.stanford.edu/people/abisee/gs.pdf

A*
« Expands the path with the lowest cost + h value on the
frontier
* The frontier is implemented as a priority queue ordered by
f(p) = cost(p) + h(p)

Admissibility of a heuristic

Def.:

Let c(n) denote the cost of the optimal path from node n to any
goal node. A search heuristic h(n) is called
admissible if h(n) < c¢(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

https://www.cs.ubc.ca/~mack/CS322/lectures/2-Search6.pdf

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

@ bounded depth-first search with increasing bounds

@ instead of depth we bound f
(in this chapter f(n) := g(n) + h(n.state) as in A¥)

~» |IDA* (iterative-deepening A*)

e tree search, unlike the previous best-first search algorithms

https://ai.dmi.unibas.ch/ _files/teaching/fs17/ai/slides/ail7.pdf

Iterative Deepening DFS (IDS) in a Nutshell

« Use DFS to look for solutions at depth 1, then 2, then 3, etc
— Fordepth D, ignore any paths with longer length
- Depth-bounded depth-first search

depth=1 O

LYY
T

https://www.cs.ubc.ca/~mack/CS322/lectures/2-Search6.pdf

(Heuristic) Iterative Deepening: IDA”

* Like lterative Deepening DFS
— But the depth bound is measured in terms of the f value

 |f you don't find a solution at a given depth

— Increase the depth bound:
to the minimum of the f-values that exceeded the previous bound

https://www.cs.ubc.ca/~mack/CS322/lectures/2-Search6.pdf

Iterative-Deepening A*

= Like iterative-deepening depth-first, but...
= Depth bound modified to be an f-limit

= Start with f-limit = h(start)

* Prune any node if f(node) > f-limit

= Next f-limit = min-cost of any node pruned

IDA*(Iterative Deepening A*) Search

Perform depth-first search LIMITED to some {-
bound.

If goal found: ok.
Else: increase f-bound and restart.

How to establish the f-bounds? h

- initially: £(S)
generate all successors
record the minimal f(succ) > {(S)
Continue with minimal f(succ) instead of f(S)

f4

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

path current search path (acts like a stack)

node current node (last node in current path)

g the cost to reach current node

£ estimated cost of the cheapest path (root..node..goal)

h (node) estimated cost of the cheapest path (node..goal)

cost(node, succ) step cost function

is_goal (node) goal test

successors(node) node expanding function, expand nodes ordered by g + h(node)
ida_star(root) return either NOT FOUND or a pair with the best path and its cost

procedure ida_ star(root)

bound := h(root)
path := [root]
loop
t := search(path, 0, bound)

if t = FOUND then return (path, bound)
if t = » then return NOT FOUND
bound := t
end loop
end procedure

https://en.wikipedia.org/wiki/lterative_deepening_A*

function search(path, g, bound)
node := path.last
f := g + h(node)
if £ > bound then return £
if is goal(node) then return FOUND
min := o
for succ in successors(node) do
if succ not in path then
path.push(succ)
t := search(path, g + cost(node, succ), bound)
if t = FOUND then return FOUND
if t < min then min := t
path.pop()
end if
end for
return min
end function

https://en.wikipedia.org/wiki/lterative_deepening_A*

f-limited, f-bound = 100 p f-new = 120
S

.....
+*

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

f-limited, f-bound = 120

"
L
o’ - &
. »
. . “
- . . .
. ™ - .
- - ..‘
.
- ® -
. K N
. . -
- ..
- -
. ot
. .
. «*
sant®
f=130
P
- ..
L A tay
"LL] * oL T
-
",
* ol
* e
.
L
.
-
-
-
0

p f-new = 125

-
Y
*
.
-
. .
o, .
. -
e .
- ™
. -
by -
& -
. F
o
" L™
.o° .,
. .
g .
0
-
)
- -
- -
) -
- .
. .
. .
N .
- .
- .
L] -

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

f-limited, f-bound = 125

quccsss

https://www.slideshare.net/hemak15/lecture-17-iterative-deepening-a-star-algorithm

IDA* Analysis
= Complete & Optimal (a la A*)

A‘ ~n

= Space uSage o« depth of solution
= Each iteration is DFS - no priority queue!

= # nodes expanded relative to A*
= Depends on # unique values of heuristic function
= |[n 8 puzzle: few values = close to # A* expands

= |n eastern-europe travel: each f value is unique
= 1+2+...+n = 0O(n?) where n=nodes A* expands
if n is too big for main memory, n? is too long to wait!

= Generates duplicate nodes in cyclic graphs

o |IDA” is a tree search variant of A*
based on iterative deepening depth-first search

@ main advantage: low space complexity
e disadvantage: repeated work can be significant

@ most useful when there are few duplicates

https://ai.dmi.unibas.ch/ _files/teaching/fs17/ai/slides/ail7.pdf

Beam Search

" |dea

= Best first

= But discard all but N best items on priority queue
= Evaluation

= Complete?
No

= Time Complexity?
O(b"d)

= Space Complexity?
O(b + N)

Hill Climbing

"Gradient ascent”

=|dea
» Always choose best child; no backtracking
» Beam search with |queue| = 1 N

"Problems? /\ﬂj \/\/“\/x/\
* Local maxima \—j\

* Plateaus S

\
 Diagonal ridges /W‘
| \ \

© Daniel S. Weld 15

HILL-CLIMBING CAN GET STUCK!

http://www.cs.cmu.edu/~arielpro/15381f16/c_slides/781f16-2a.pdf

Diagonal ridges:
From each local maximum all the
available actions point downhill,
but there is an uphill path!

Zig-zag motion,
very long ascent time!

Gradient ascent doesn’t have this
issue: all state vector components are
(potentially) changed when moving to a
successor state, climbing can follow the
direction of the ridge

Heuristics

It's what makes search actually work

Admissible Heuristics

= f(x) = 9(x) + h(x)
= g: cost so far
* h: underestimate of remaining costs

Where do heuristics come from?

© Daniel S. Weld

18

Relaxed Problems

= Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
* For blocks world, distance = # move operations

» heuristic = number of misplaced blocks
» What is relaxed problem?

I — . — —
_ | H _I_
out of place = 2, true distance to goal = 3

+ Cost of optimal soln to relaxed problem < cost of

optimal soln for real problem
© Daniel S. Weld

What's being relaxed?

71 AOIBGH

Heuristic = Euclidean distance

Straight-line distance

© Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugo
Mehadia

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

366

0
160
32
161
176

151
16
14+
241
1%
80

1O
193
253
329

199
74

Traveling Salesman Problem

Objective: shortest path visiting every city

What can be
Relaxed?

21

A number of strategies -- beyond the scope of this lecture, but see:
http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/1112/Lectures/TSPLecture-120426.pdf
for more information, if you’re curious.

Heuristics for eight puzzle

4

2|3

9

1,6

8

‘B

start

= \What can we relax?

2

f—

2 |3

N

5| 6

d

goal

h1 = number of tiles in wrong place

h2 = 2 distances of tiles from correct loc

22

[um—
Oooc\-ht\JU

12
14
18
24

Importance of Heuristics

h1 = number of tiles in wrong place

IDS

10

112
680
6384
47127
364404
3473941

A*(h1)
6
13
20
39
93
227
539
3056
39135

[

.mw

23

Importance of Heuristics

h1 = number of tiles in wrong place
h2 = X distances of tiles from correct loc

D IDS A*(hl) A*(h2)
2 10 6 6
4 112 13 12
6 630 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

OJ

ot
[=))

Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
= 24 Puzzle 65000 years

Need even better heuristics!

© Daniel S. Weld 25

Adapted from Richard Korf presentation

Subgoal Interactions

= Manhattan distance assumes

= Each tile can be moved independently o
= Underestimates because

= Doesn’t consider interactions between tiles

—

S
ool o N
Ol

© Daniel S. Weld

Adapted from Richard Korf presentation

26

cost of the optimal solution of sub-problem
< cost of the optimal solution of complete problem

/R : Open Education Edinburgh
~¥3¥.: Published on Feb 26, 2014

https://www.youtube.com/watch?v=HZWV4uOJWk8

Pattern Databases

* idea: pre-compute and store the solution costs for all
possible sub-problems in database

» computing heuristic = DB lookup
» construct DB by searching backwards from the goal

state and recording costs

— very expensive operation, but needs to be computed only
once

7 f'; Open Education Edinburgh
¥y Published on Feb 26,2014

https://www.youtube.com/watch?v=HZWV4uOJWk8

Pattern Databases

[Culberson & Schaeffer 1996]

| ' 1(2 (3|4
" Pick any subset of tiles 516 |7
= g Q 7,11 42,13 14 15 11 12
= (or as drawn) .

= Precompute a table
= Optimal cost of solving just these tiles

= For all possible configurations
= 57 Million in this case

= Use A” or IDA*
» State = position of just these tiles (& blank)

© Daniel S. Weld 27

Adapted from Richard Korf presentation

Using a Pattern Database
= As each state is generated
= Use position of chosen tiles as index into DB

= Use lookup value as heuristic, h(n)

= Admissible?

© Daniel S. Weld

Adapted from Richard Korf presentation

28

Combining Multiple Databases

1(2 (3 |4

= Can choose another set of tiles 576 7 18
= Precompute mulitiple tables 9101112

= How combine table values? 13/14 {|15.

= E.g. Optimal solutions to Rubik’s cube
= First found w/ IDA* using pattern DB heuristics
= Multiple DBs were used (dif cubie subsets)
= Most problems solved optimally in 1 day
= Compare with 674,000 years for IDDFS

© Daniel S. Weld Adapted from Richard Korf presentation 29

Efficiency

Time for the preprocessing to create a PDB
is usually negligible compared to the time
to solve one problem-instance with no
heuristic.

Memory is the limiting factor.

y e

Many small pattern databases
5

q/ N

R

1&5) see hn(j)

Y

max

y

https://webdocs.cs.ualberta.ca/~holte/CMPUT651/pdb20041031.pdf

Rubik’s Cube

PDB Size | n | Nodes Generated
13,305,600 | 8 2,654,689
17,740,800 | 6 2,639,969
26,611,200 | 4 3,096,919
53,222,400 | 2 5,329,829
106,444,800 | 1 61,465,541

RATIO =

Summary

State Space Bestn Ratio
(3x3)-puzzle 10 3.85
9-pancake 10 8.59
(8,4)-Topspin (3 ops) 9 3.76
(8,4)-Topspin (8 ops) 9 20.89

(3x4)-puzzle 21+ 185.5
Rubik’s Cube 6 23.28

15-puzzle (additive) 5 2.38

24-puzzle (additive) 8 1.6 to 25.1

#nodes generated using one PDB of size M

#nodes generated using n PDBs of size M/n

‘ ANy

https://webdocs.cs.ualberta.ca/~holte/CMPUT651/pdb20041031.pdf

Drawbacks of Standard Pattern DBs

= Since we can only take max
* Diminishing returns on additional DBs

= \Would like to be able to add values

© Daniel S. Weld

Adapted from Richard Korf presentation

30

Disjoint Pattern DBs

N
w

[P
w

-

N

-

(8]
_ NGE

O| O —
(@)}
~

= Partition tiles into disjoint sets

= For each set, precompute table
= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million

= During search
= Look up heuristic values for each set
= Can add values without overestimating!

10|11

= Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

31
© Daniel S. Weld

Performance

L

= 15 Puzzle: 2000x speedup vs Manhattan dist

m IDA* with the twn NRe ehnwn nraviniic
I h’7 \ VVILIT LNy AVV N W T LI YYIL rJI\IV|UU\J

Puzzles optimally in 30 milliseconds

%
Q
(D
n
-
N

m 24 Puzzle: 12 million x speedup vs Manhattan
= |DA* can solve random instances in 2 days.

= Requires 4 DBs as shown
= Fach DB has 128 million entries

= Without PDBs: 65,000 years

© Daniel S. Weld Adapted from Richard Korf presentation 32

