Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

- Forward checking only propagates information from assigned to unassigned
- It doesn’t catch when two unassigned variables have no consistent assignment:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation: reason from constraint to constraint

Video of Demo Coloring – Backtracking with Forward Checking
Consistency of a Single Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint.

Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent.

- Important: If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

AC-3 algorithm for Arc Consistency

- Runtime: \(O(n^2d^3) \), can be reduced to \(O(n^2d^2) \)
- Detecting all possible future problems is NP-hard — why?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each \(k \) nodes, any consistent assignment to \(k-1 \) can be extended to the \(k^{th} \) node.
 - Higher \(k \) more expensive to compute
 - (You need to know the algorithm for \(k=2 \) case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Video of Demo Arc Consistency – CSP Applet – n Queens

Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph

Ordering

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Maximum Degree
- Tie-breaker among MRV variables
 - What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
- Why most rather than fewest constraints?

Ordering: Least Constraining Value
- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - i.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Rationale for MRV, MD, LCV
- We want to enter the most promising branch, but we also want to detect failure quickly
- MRV+MD:
 - Choose the variable that is most likely to cause failure
 - It must be assigned at some point, so if it is doomed to fail, better to find out soon
- LCV:
 - We hope our early value choices do not doom us to failure
 - Choose the value that is most likely to succeed

Structure
- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is \(O(n/\log n)\), linear in n
 - E.g., \(n = 80, d = 2, c = 20\)
 - \(2^{20} \approx 4\) billion years at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4\) seconds at 10 million nodes/sec

Problem Structure
- [Diagram of problem structure]

Tree-Structured CSPs
- Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n d^2)\) time
 - Compare to general CSPs, where worst-case time is \(O(n^n)\)
 - This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning
Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children
- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d^2) (why?)

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X_i→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn't this algorithm work with cycles in the constraint graph?
Note: we'll see this basic idea again with Bayes' nets

Nearly Tree-Structured CSPs
- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d^2), very fast for small c

Cutset Conditioning
- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
- Solve the residual CSPs (tree-structured)
Local Search for CSPs

Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \text{total number of violated constraints} \)

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256\) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(c(n) = \text{number of attacks} \)

Performance of Min-Conflicts

- Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \)!!)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking sea
- Speed-ups:
 - Ordering
 - Filtering
 - Structure
- Iterative min-conflicts is often effective in practice