

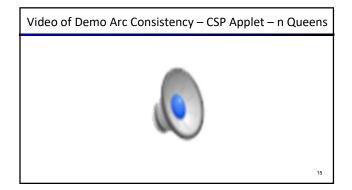
Strong K-Consistency

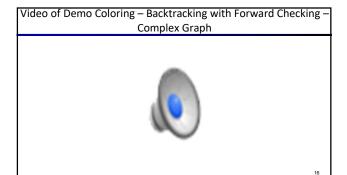
- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Whv?
 - Choose any assignment to any variable
 Choose a new variable

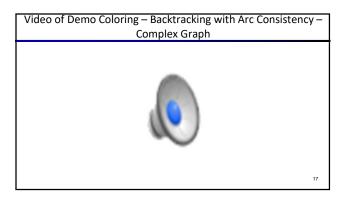
 - By 2-consistency, there is a choice consistent with the first
 Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2

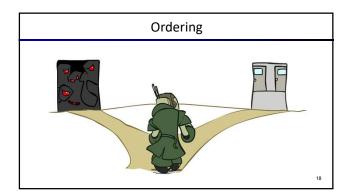
 ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

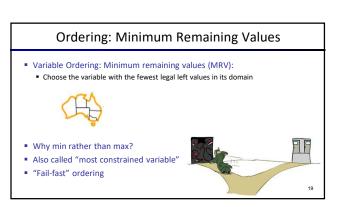
14











Ordering: Maximum Degree

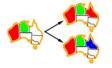
- Tie-breaker among MRV variables
 - What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic:
 - Choose the variable participating in the most constraints on remaining

• Why most rather than fewest constraints?

20

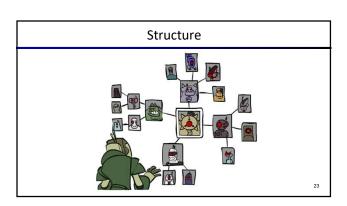
Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible



Rationale for MRV, MD, LCV

- We want to enter the most promising branch, but we also want to detect failure quickly
- - Choose the variable that is most likely to cause failure
 - It must be assigned at some point, so if it is doomed to fail, better to
- - We hope our early value choices do not doom us to failure
 - Choose the value that is most likely to succeed



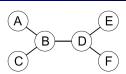
Problem Structure

- Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
- Worst-case solution cost is O((n/c)(d^c)), linear in n

- E.g., n = 80, d = 2, c = 20
 2⁸⁰ = 4 billion years at 10 million nodes/sec
 (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

24

Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n\ d^2)$ time Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs Algorithm for tree-structured CSPs: Order: Choose a root variable, order variables so that parents precede children ABCCDFF Remove backward: For i = n : 2, apply Removelnconsistent(Parent(X,),X,) Assign forward: For i = 1 : n, assign X, consistently with Parent(X,) Runtime: O(n d²) (why?)

