
1

CSE 473: Artificial Intelligence
Autumn 2018

Constraint Satisfaction Problems - Part 1 of 2

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

1

Previously
 Formulating problems as search
 Blind search algorithms

 Depth first
 Breadth first (uniform cost)
 Iterative deepening

 Heuristic Search
 Best first

 Beam (Hill climbing)
 A*
 IDA*

 Heuristic generation
 Exact soln to a relaxed problem
 Pattern databases

 Local Search
 Hill climbing, random moves, random restarts, simulated annealing 2

What is Search For?

 Planning: sequences of actions
 The path to the goal is the important thing
 Paths have various costs, depths
 Assume little about problem structure

 Identification: assignments to variables
 The goal itself is important, not the path
 All paths at the same depth (for some formulations)

3

Constraint Satisfaction Problems

CSPs are structured (factored) identification problems 4

Constraint Satisfaction Problems

 Standard search problems:
 State is a “black box”: arbitrary data structure
 Goal test can be any function over states
 Successor function can also be anything

 Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

 Making use of CSP formulation allows for
optimized algorithms
 Typical example of trading generality for utility (in this

case, speed) 5

Constraint Satisfaction Problems

 Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

 “Factoring” the state space

 Representing the state space in a
knowledge representation

6

2

CSP Example: N-Queens

 Formulation 1:
 Variables:
 Domains:
 Constraints

7

CSP Example: N-Queens

 Formulation 2:
 Variables:

 Domains:

 Constraints:

Implicit:

Explicit:
8

CSP Example: Sudoku

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region
(or can have a bunch
of pairwise inequality
constraints)

9

Propositional Logic

 Variables:
 Domains:
 Constraints:

propositional variables
{T, F}
logical formula

10

CSP Example: Map Coloring

 Variables:

 Domains:

 Constraints: adjacent regions must have different
colors

 Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

11

Constraint Graphs

12

3

Constraint Graphs

 Binary CSP: each constraint relates (at most) two
variables

 Binary constraint graph: nodes are variables, arcs
show constraints

 General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

13

Example: Cryptarithmetic

 Variables:

 Domains:

 Constraints:

15

16

Chinese Constraint Network

Soup

Total Cost
< $40

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

Real-World CSPs

 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when and where?
 Hardware configuration
 Gate assignment in airports
 Space Shuttle Repair
 Transportation scheduling
 Factory scheduling
 … lots more!

17

Example: The Waltz Algorithm

 The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

 An early example of an AI computation
posed as a CSP

?

19

Waltz on Simple Scenes

 Assume all objects:
 Have no shadows or cracks
 Three-faced vertices
 “General position”: no junctions change with

small movements of the eye.
 Then each line on image is one of the

following:
 Boundary line (edge of an object) (>) with right

hand of arrow denoting “solid” and left hand
denoting “space”

 Interior convex edge (+)
 Interior concave edge (-)

21

4

Legal Junctions

 Only certain junctions are physically possible
 How can we formulate a CSP to label an image?
 Variables: edges
 Domains: >, <, +, -
 Constraints: legal junction types

22

Slight Problem: Local vs Global Consistency

23

Varieties of CSPs

24

Varieties of CSP Variables

 Discrete Variables
 Finite domains

 Size d means O(dn) complete assignments
 E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 Infinite domains (integers, strings, etc.)
 E.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by linear program

methods (see CSE 521 for a bit of LP theory)

25

Varieties of CSP Constraints

 Varieties of Constraints
 Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

 Binary constraints involve pairs of variables, e.g.:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

 Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

26

Solving CSPs

28

5

CSP as Search

 States
 Operators
 Initial State
 Goal State

29

Standard Depth First Search

31

Standard Search Formulation

 Standard search formulation of CSPs

 States defined by the values assigned
so far (partial assignments)
 Initial state: the empty assignment, {}
 Successor function: assign a value to an

unassigned variable
 Goal test: the current assignment is

complete and satisfies all constraints

 We’ll start with the straightforward,
naïve approach, then improve it

32

Backtracking Search

34

Backtracking Search

 Backtracking search is the basic uninformed algorithm for solving CSPs

 Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

 Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 “Incremental goal test”

 Depth-first search with these two improvements
is called backtracking search

 Can solve n-queens for n  25
35

Backtracking Example

36

6

Backtracking Search

 What are the choice points?

[Demo: coloring -- backtracking]
37

Backtracking Search

 Kind of depth first search
 Is it complete?

38

Improving Backtracking

 General-purpose ideas give huge gains in speed

 Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

40

Next: Constraint Satisfaction Problems - Part 2

41

