Previously

CSE 473: Artificial Intelligence
Autumn 2018

Constraint Satisfaction Problems - Part 1 of 2

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Formulating problems as search
Blind search algorithms
= Depth first
= Breadth first (uniform cost)
= lterative deepening
Heuristic Search
= Best first
= Beam (Hill climbing)
. A
= IDA*
Heuristic generation
= Exact soln to a relaxed problem
= Pattern databases
Local Search

= Hill climbing, random moves, random restarts, simulated annealing

What is Search For?

Constraint Satisfaction Problems

= Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Assume little about problem structure

= |dentification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)

CSPs are structured (factored) identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

= Standard search problems:
= Stateis a “black box”: arbitrary data structure
® Goal test can be any function over states
® Successor function can also be anything

= Constraint satisfaction problems (CSPs):
= Aspecial subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

® Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

= Making use of CSP formulation allows for
optimized algorithms

= Typical example of trading generality for utility (in this
case, speed)

= “Factoring” the state space

= Representing the state space in a
knowledge representation

= Constraint satisfaction problems (CSPs):
= Aspecial subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

® Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

CSP Example: N-Queens

CSP Example: N-Queens

= Formulation 1: /
* Variables: X;;

Is the,
e g Ueen at x
?
j

* Domains: {0,1}
= Constraints

Vi, g,k (X5, Xar) € {(0,0),(0,1),(1,0)}
vi, g,k (Xij, Xk;) € {(0,0),(0,1),(1,0)}

> Xij=N
Vi, g,k (Xij, Xitrj+k) € {(0,0),(0,1),(1,0)} i
Vi, gk (Xij, Xitr,j—r) € £(0,0),(0,1),(1,0)}

. qu Q1

= Formulation 2: een on for roy, 15
= Variables: Qy ' Q>
Q3
= Domains: {1,2,3,...N} Qa4

= Constraints:

mpic. Vi,j non-threatening(Q;, Q;)

Bxplicit: (Q1,Q2) € {(1,3), (1,4),.. }

CSP Example: Sudoku

Propositional Logic

= Variables:
= Each (open) square

7

Tel 2 = Domains:
slal (106l 1 {129}
5 1 = Constraints:
1 318 9 9-way alldiff for each column
b g) g ? 9-way alldiff for each row
7 2 9-way alldiff for each region
78 26 (or can have a bunch
> 3 of pairwise inequality

constraints)

©

(peAr)VvipAga~T)

= Variables: propositional variables
= Domains: {T, F}
= Constraints: logical formula

CSP Example: Map Coloring

Constraint Graphs

Variables: WA, NT, Q, NSW, V, SA, T
Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA #= NT

Explicit: (WA, NT) € {(red, green), (red, blue),...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=greer
V=red, SA=blue, T=green}

1
()
©)

Constraint Graphs

Example: Cryptarithmetic

= Binary CSP: each constraint relates (at most) two
variables

Binary constraint graph: nodes are variables, arcs
show constraints

General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Variables:
FTUWRO X1 X X3
Domains:
{0,1,2,3,4,5,6,7,8,9}
Constraints:

alldiff(F, T,U, W, R, O)

O+0=R+10-X;

s - 2 Chinese Constraint Network

Real-World CSPs

&, o .
o - -
=
N A
= = B ~ Must be
- Hot&Sour
< Soup

$ - —
@Dish ~ y" .
eanuts
e

. Chicken

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Gate assignment in airports
Space Shuttle Repair
Transportation scheduling
Factory scheduling

= .. lots more!

Example: The Waltz Algorithm

Waltz on Simple Scenes

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Assume all objects:
* Have no shadows or cracks
= Three-faced vertices
= “General position”: no junctions change with
small movements of the eye.
= Then each line on image is one of the
following:
= Boundary line (edge of an object) (>) with right
hand of arrow denoting “solid” and left hand
denoting “space”

= Interior convex edge (+)
= Interior concave edge (-)

Legal Junctions

Slight Problem: Local vs Global Consistency

Only certain junctions are physically possible
How can we formulate a CSP to label an image?
Variables: edges

Domains: >, <, +, -

Constraints: legal junction types

Varieties of CSPs

Varieties of CSP Variables

24

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments
* E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g, start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by linear program
methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

Solving CSPs

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent
reducing domains), e.g.:

SA # green

= Binary constraints involve pairs of variables, e.g.:

SA #= WA
= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g, red is better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'll ignore these until we get to Bayes’ nets)

26

CSP as Search

Standard Depth First Search

= States

= Operators

= |nitial State
= Goal State

,///:E\f
SR epes

Standard Search Formulation

Backtracking Search

= Standard search formulation of CSPs

= States defined by the values assignet
so far (partial assignments)
= Initial state: the empty assignment, {}
= Successor function: assign a value to an
unassigned variable
= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Backtracking Search

Backtracking Example

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
® Variable assignments are commutative, so fix ordering
® le, [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the con:
® “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search

Can solve n-queens for n = 25

Backtracking Search

Backtracking Search

function BACKTRACKING-SEARCH({csp) returns solution/failure
return RECURSIVE-BACKTRACKING(())
function R« SIVE- BACKTRACKING(
if is complete then return assy
SELECT-UNASSIGNED-VARIABLE(VARIABLES]c5p)
for each o in ORDER-DOMAIN-VALUES(
if is consistent with given CONSTRAINTS|
add | } 10 ax
RecuRsivE-BACKTRACKING(
ir t o then return
remove { } from
return f

) returns soln failure

] then

P)

= What are the choice points?

37
[Demo: coloring -- backtracking]

= Kind of depth first search
= |sit complete?

Improving Backtracking

Next: Constraint Satisfaction Problems - Part 2

General-purpose ideas give huge gains in speed
Ordering:

= Which variable should be assigned next?

= In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

40

