T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR UISE ONE LITILE
Gml INSTEAD.

Q%

EH, SCREW GOOD PRACTICE.
HOW BAD CAN IT BE?

\ goto main_sub3;

p;

*COMPILE*
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Recap: Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
» Inference: given a fixed BN, what is P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?



Bayes’ Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if
Ve,y P(x,y) = P(z)P(y) ---> X1Y
X and Y are conditionally independent given Z
Va,y,z P(x,y|z) = P(z|z)P(y|z) —--=+ X 1LY|Z

(Conditional) independence is a property of a distribution

__—,——@__._

Example: Alarm 1L Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xi|lxy - xi—1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

» They can be read off the graph

= |mportant for modeling: understand assumptions made

when choosing a Bayes net graph



Independence in a BN

" |mportant question about a BN:
= Are two nodes independent given certain evidence?

= |f yes, can prove using algebra (tedious in general)
= |f no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)

= Addendum: they could be independent: how?






D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries



Causal Chains

» This configuration is a “causal chain” = Guaranteed X independent of Z? No!

One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

Y
}

Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no

Al

traffic
X: Low pressure Y: Rain Z: Traffic
= In numbers:
P(z,y,z) = P(x)P(y|lz)P(z|y) P(+y | +x)=1,P(-y|-x)=1,

P(+z|+y)=1,P(-z|-y)=1



Causal Chains

» This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

P(x,y,z)
P(x,y)

_ P(@)P(ylz)P(z|y)
P(z)P(y|z)

= P(z|y)

Yes!

P(z|z,y) =

Pla,y,z) = P()P(yle) P(z]y) = Evidence along the chain “blocks” the

influence



Common Cause

o o o o 13 b4
* This configuration is a “common cause

) M
Y: Project | Project |
| Due! |

due

2
,@?&; ( Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

X: Forums [_“_
busy

= Guaranteed X independentofZ? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

®* |n numbers:

P(+x | +y)=1,P(x|-y)=1,
P(+z | +y)=1,P(-z|-y)=1



Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?
Y: Project ‘T‘ P;OJG&’C | P(z,y,2)
due — P(z|xz,y) = —
P(z,y)
_ P(y)P(xly) P(z]y)
P(y)P(z|y)
= P(z]y)
X: Forums
busy Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) = Observing the cause blocks influence

between effects.



Common Effect

= Last configuration: two causes of one = Are Xand Y independent?

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

they are not correlated

X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are XandY independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= Observing an effect activates influence between

possible causes.




The General Case




The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken

into repetitions of the three canonical cases



Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected G e
by an undirected path not blocked by
a shaded node, then they are not

conditionally independent 0
L"—-\
= Almost works, but not quite D W Tagw
. e o S e s ef’: N
= Where does it break? Zagnn R — = )
= Answer: the v-structure at T doesn’t count B / [i/1] [/ 1] /‘ /

as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
* Yes, if Xand Y “d-separated” by Z O—’O—’O
= Consider all (undirected) paths from XtoY
= No active paths = independence! C

= A pathis active if each triple is active:
= Causal chain A - B - C where B is unobserved (either direction)
= Common cause A €< B = C where B is unobserved
= Common effect (aka v-structure)
A = B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

€ §



D-Separation

= Query: X, |l Xj|{Xk17 7an} ?

= Checkall (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed
%€ }L X]‘{Xklv ey an}

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X 1L X { Xy oy Xk, }




Example

RI1B Yes
R1B|T
R1.B|T'



Example

LIT'|T Yes
LI B Yes
L B|T
L1 B|T’
LU B|T,R VYes



Example

= Variables:
= R: Raining
= T: Traffic
= D: Roof drips
= S:1'm sad
= Questions:
T 1 D

T1 D|R Yes
T 1 D|R, S



Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

Xi 1L X { X,y oy Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

oMPUTE ALL THE
C(NDEPF.N DENCES!/

S
5
hel
583



Topology Limits Distributions

Given some graph topology
G, only certain joint
distributions can be
encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

(XULY,X1ZY U Z,

(X1 Z|Y)
XUZ|Y,XLY|ZYLZ|X}

®
® @

{}

PP
5P &P
PP PR



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= ABayes net s jointdistribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution



Bayes’ Nets

JRepresentation
JConditionaI Independences

" Probabilistic Inference
" Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
» Probabilistic inference is NP-complete
= Sampling (approximate)

" Learning Bayes’ Nets from Data



