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Topics from 30,000’

= We’ re done with Part | Search and Planning!

= Part Il: Probabilistic Reasoning
= Diagnosis
= Speech recognition

Tracking objects

Robot mapping

Genetics

Error correcting codes

... lots more!

= Part lll: Machine Learning



Outline

= Probability

= Random Variables

Joint and Marginal Distributions

Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule

Inference

Independence

= You’'ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for 05
managing our beliefs and knowledge .
<0.01




Value

What is....?

rain 0.1
fog 0.3
meteor | 0.0

Random Variable

Probability

/ Distribution



Joint Distributions

= A joint distribution over a set of random variables: X1, X, ..

specifies a probability for each assignment (or outcome):
P(X1{=x1,Xo=ax9,...Xn = xp)

P(xz1,z2,...2n)

= Must obey: P(gjl7 To, ... a:n) >0
- P(xq1,20,...2n) =1

(CIJl,LL‘Q,...HJn)

= Size of joint distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

. Xn
P(T,W)
T w P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabil

A probabilistic model is a joint distribution
over a set of random variables

Probabilistic models:
= (Random) variables with domains

= Joint distributions: say whether assignments
(called “outcomes”) are likely

= Normalized: sumto 1.0
= |deally: only certain variables directly interact

Constraint satisfaction problems:
= Variables with domains
= Constraints: state whether assignments are possible
= |deally: only certain variables directly interact

istic Models

Distribution over TW

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2

cold rain 0.3

Constraint over TW

hot sun T
hot rain F
cold sun F
cold rain T




Events

= An eventis a set E of outcomes

P(EyY= )  P(z1...zn)

" From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




" P(+x, +y) ?

"= P(+x)?

" P(-y OR +x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
=  Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W)
! W P |d 0.5
hot sun 0.4 P(t) = Z P(t,s) = -
hot rain 0.1 ° P(W)
cold sun 0.2
cold rain 0.3 . sun 0.6
P(s) = zt: P(t, s) rain 0.4

P(X1=z1) =) P(X;=u=z1,Xo=u1xp)
D



Quiz: Marginal Distributions

——
P(z) =) P(z,y)
Yy

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) => P(z,y) ,




Conditional Probabilities

= Asimple relation between joint and marginal probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b
P(afb) = 2La:0)
P(b)
P(T, W) o

T W p — _ .

. P(W=s\T=c)=P<W s,T=¢c) _02

ot sun 0.4 P(T = ¢) 0.5
hot rain 0.1 %
cold | sun 0.2 =PW=s,T=c)+ P(W=nr,T =c)
cold rain 0.3 =0.24+0.3 =0.5

= 0.4



Quiz: Conditional Probabilities

" P(+x | +y)?

P(X,Y)

" P(-x|+y)?

= P(-y | +x) ?



Conditional Distributions

= Conditional distributions are probability distributions over some variables
given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T. W)
b}
_ P
08 T W P
;\ su.n 0'2 hot sun 0.4
g ) il : hot rain 0.1
X P(W|T = cold) cold | sun 0.2
cold rain 0.3
sun 0.4
rain 0.6




Conditional Distribs - The Slow Way...

P(W:s]T:c)ZP(W:S’T:C)

P(T = c¢)
. P(W =s,T =c¢)
P(T,W) T PW=sT=c)+PW=rT=c)
0.2
T W P 02+03 > P(W|T = ¢)
not | sun | 94 —_—
hot rain 0.1 <un 0.4
cold sun 0.2 ain 0.6
_ . _,_PW=nrT=c¢) .

cold rain 0.3 P(W =rT=c) = (T =0

. P(W =nr,T =c¢)
C PW=s,T=c¢)+P(W=rT=c)

0.3
= = 0.6
0.2+ 0.3




Probabilistic Inference

= Probabilistic inference =

“compute a desired probability from other known
probabilities (e.g. conditional from joint)”

= We generally compute conditional probabilities
= P(ontime | noreported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80

= Observing new evidence causes beliefs to be updated



Inference by Enumeration

=  General case:
» Evidence variables: £1
* Query* variable: Q

= Hidden variables: Hi...H;,
= Step 1: Select the = Step 2: Sum out H to get joint
entries consistent of Query and evidence
with the evidence
[ Poeo
v ]
’ 0.2 T
=
— P hi...h .
P(Q,el...ek)— Z (@: 1 T €1 6/]{3)

B =e1...¢€

hl...hr

X1 X2; 05 8n

All variables

~

X1, Xz5,... Xn

* Works fine with
multiple query
variables, too

P(Qler - . . e)

= We want:

= Step 3: Normalize

1
><_
A

Z=Y P(Qerex)

P(Qler+ex) = 7 P(Qrer-+ e



Inference by Enumeration

= P(W)?

= P(W | winter)?

= P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

= Computational problems?
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) > ren="00

S Bl |



The Product Rule

P(y)P(zly) = P(z,y)

= Example:
P(D|W) P(D, W)
P(W) D w P D W

sun 0.8 dry sun 0.9 <:> dry sun
0.7

i i wet rain
rain 0.2 wet rain

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xz1,20,23) = P(z1)P(z2|z1)P(23|z1, 22)

P(x1,20,...2n) = HP(sz"xl e T—1)
7



Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1Y
Vo,y P(xz,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

= Can use independence as a modeling assumption
* |ndependence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

= |ndependence is like something from CSPs: what?



Example: Independence?

P(T)
T P
hot 0.5
Pl(T, W) cold 0.5 P2 (T7 W) — P(T)P<W)
T W P T W P
hot sun 0.4 hot sun 0.3
hot rain 0.1 hot rain 0.2
cold sun 0.2 cold sun 0.3
cold rain 0.3 P(W) cold rain 0.2
W P
sun 0.6

rain 0.4




= N fair, independent coin flips:

Example: Independence

P(X1) P(X>5)

H 0.5 H 0.5

T 0.5 T 0.5
.




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
» P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
» P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
®= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XJ_I_Y|Z

if and only if:
Vz,y,z | P(x,yl2) = P(x]z)P(y|2)
or, equivalently, if and only if

Vi, y,z : P(z|z,y) = P(z|z)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= What about this domain: — = gng\i\
=" Fire @
= Smoke é% :
= Alarm (@ =




Bayes Rule

s 3 I
& Y \ )




Pacman — Sonar (P4)

o
74 CS5188 Pacman

.)_gk;

———

XXX 12.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar (no beliefs)




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(xz|y) P(y) = P(ylz)P(z)

That’s my rule!

= Dividing, we get:
P(y|z)
P(zly) =
P(y)

= Why is this at all helpful?

— .~ Pz)

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later (e.g. ASR, MT)

" |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)

P(causeleffect) = P (effoct)

= Example:
= M: meningitis, S: stiff neck

P(+m) = 0.0001 ool
P<+S| + m) =0.8 givens
P(+s| —m)=0.01
P(4m] + ) = P(+s| +m)P(+m) _ P(+s| +m)P(+m) _ 0.8 x 0.0001
P(+s) P(+s| +m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0079

= Note: you should still get stiff necks checked out! Why?



Ghostbusters Sensor Model

Values of Pacman’s Sonar Readings

=z =
P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

Real Distance = 3

36



Ghostbusters, Revisited

" |et’s say we have two distributions:
" Prior distribution over ghost location: P(G)
= Let’s say this is uniform ...
. 0.11 0.11 0.11
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R =vyellow | G=(1,1)) =0.1
= We can calculate the posterior distribution n
P(G|r) over ghost locations given a reading
using Bayes’ rule: 017
° P(glr) = P(rlg) P(g)

[Demo: Ghostbuster — with probability (L12D2) ]




Video of Demo Gh sters with Probability




Probability Recap

Conditional probability P(zly) = P(z,y)
P(y)
Product rule P(z,y) = P(x|y)P(y)
Chain rule P(X1,X5,...Xn) = P(X1)P(X5|X1)P(X3/X1,X2)...
= H P(Xi|X17"'7XZ'—1)

=1

Bayes rule P(zly) = PIS(J‘:;)P(:U)
Y

X, Y independent if and only if: Va,y : P(x,y) = P(x)P(y)

X and Y are conditionally independent given Z: XUY|Z
it and only if: Vo, y,z 1 P(x,y|z) = P(x|2)P(y|2)



