Course Information
Course description
Meetings
Prerequisites
Textbooks
Online resources
Grading
Homework policy
Audit policy
Teaching Staff
Instructor
TA
Handouts and Materials
Lectures
Homework
CSE515 Statistical Methods in Computer Science – Spring 2011
Lectures (tentative)
Week
Date
Topic
Reading
Slides
HW
1
3/28
Introduction, Bayesian network representation
2.1-3, 3.1
(PDF)
(Annotated PDF)
3/30
Bayesian network representation cont.
3.1-3
(PDF)
(Annotated PDF)
2
4/4
Local probability models
5
(PDF)
HW1 out
4/6
Undirected graphical models I
4
(PDF)
(Annotated PDF)
3
4/11
Undirected graphical models II + CRFs and applications
4
(PDF)
(Annotated PDF)
4/13
Inference: Exact inference
9.1-3
(PDF)
(Annotated PDF)
4
4/18
Exact inference
9.4-6
(PDF)
(Annotated PDF)
HW2 out; HW1 due
4/20
Exact inference: Clique Trees
10.1-4
(PDF)
(Annotated PDF)
5
4/25
Learning: parameter estimation
17
(PDF)
(Annotated PDF)
4/27
Parameter learning in BNs
17
(PDF)
(Annotated PDF)
6
5/2
Structure learning in BNs
18
(PDF)
(Annotated PDF)
HW3 out; HW2 due
5/4
Partially observed data (learning with missing data)
19
(PDF)
(Annotated PDF)
7
5/9
EM algorithm and Applications
(PDF)
(Annotated PDF)
5/11
Approximate inference: particle based
12
(PDF)
(Annotated PDF)
8
5/16
Particle-based approximate inference
12
(PDF)
(Annotated PDF)
HW3 due
5/18
Global approximate inference
11
(PDF)
(Annotated PDF)
HW4 out
9
5/23
Learning Undirected Models
20
(PDF)
(Annotated PDF)
5/25
Markov Decision Processes (Instructor: Mausam)
(PDF)
10
5/30
(memorial day)
6/1
Temporal models (DBNs, HMMs)
(PDF)
HW4 due