Readings: K&F 10.3, 10.4, 17.1, 17.2

Message Passing Algorithms for Exact Inference & Parameter Learning

Lecture 8 – Apr 20, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Part I TWO MESSAGE PASSING ALGORITHMS

Clique Tree Calibration

• A clique tree with potentials $\pi_i[C_i]$ is said to be calibrated if for all neighboring cliques C_i and C_j :

"Sepset belief"

$$\sum_{C_{i}-S_{i,j}} \pi_{i}[C_{i}] = \sum_{C_{j}-S_{i,j}} \pi_{j}[C_{j}]$$

$$\begin{array}{c|c} \textbf{C,D} & \textbf{D} \\ \hline \textbf{G,I,D} & \mu_{i,j}(D) = \sum_{C} \pi_i[C,D] = \sum_{G,I} \pi_j[G,I,D] \\ \end{array}$$

- Key advantage the clique tree inference algorithm
 - Computes marginal distributions for all variables $P(X_1),...,P(X_n)$ using only twice the computation of the upward pass in the same tree.

Calibrated Clique Tree as a Distribution

• At convergence of the clique tree algorithm, we have that:

$$P_{\Phi}(\mathbf{X}) = \frac{\prod_{C_i \in T} \pi_i[C_i]}{\prod_{(C_i \leftrightarrow C_i) \in T} \mu_{i,j}(S_{i,j})}$$

Proof:

$$\begin{split} \mu_{i,j}(S_{i,j}) &= \sum_{C_i - S_{i,j}} \pi_i[C_i] = \sum_{C_i - S_{i,j}} \pi_i^0[C_i] \prod_{k \in N_i} \delta_{k \to i} \\ &= \sum_{C_i - S_{i,j}} \pi_i^0[C_i] \delta_{j \to i}(S_{i,j}) \prod_{k \in N_i - \{j\}} \delta_{k \to i} \\ &= \delta_{j \to i}(S_{i,j}) \sum_{C_i - S_{i,j}} \pi_i^0[C_i] \prod_{k \in N_i - \{j\}} \delta_{k \to i} & \textit{Definition} \\ &= \delta_{j \to i}(S_{i,j}) \delta_{i \to j}(S_{i,j}) & \delta_{i \to j} = \sum_{C_i - S_{i,j}} \pi_i^0 \prod_{k \in N_i - \{j\}} \delta_{k \to i} \end{split}$$

$$\frac{\prod_{C_i \in T} \pi_i[C_i]}{\prod_{(C_i \leftrightarrow C_i) \in T} \mu_{i,j}(S_{i,j})}$$

• Clique tree invariant: The clique beliefs π 's and sepset beliefs μ 's provide a re-parameterization of the joint distribution, one that directly reveals the marginal distributions.

Distribution of Calibrated Tree

For calibrated tree

Bayesian network

$$A \longrightarrow B \longrightarrow C$$

Clique tree

$$A,B$$
 B,C

$$P(C \mid B) = \frac{P(B,C)}{P(B)} = \frac{\pi_2[B,C]}{P(B)} = \frac{\pi_2[B,C]}{\mu_{12}[B]}$$

Joint distribution can thus be written as

$$P(A,B,C) = P(A,B)P(C \mid B) = \frac{\pi_1[A,B]\pi_2[B,C]}{\mu_2[B]}$$

 $P_{\Phi}(\mathbf{X}) = \frac{\prod_{C_i \in T} \pi_i}{\prod_{(C_i \leftrightarrow C_i) \in T} \mu_{i,j}}$

An alternative approach for message passing in clique trees?

7

Message Passing: Belief Propagation

- Recall the clique tree calibration algorithm
 - Upon calibration the final potential (belief) at i is:

$$\pi_i = \pi^0_i \prod\nolimits_{k \in N_i} \mathcal{S}_{k \to i}$$

 A message from i to j sums out the non-sepset variables from the product of initial potential and all messages except for the one from j to i

$$\delta_{i \rightarrow j} = \sum\nolimits_{C_i - S_{i,j}} \pi^0_i \prod\nolimits_{k \in N_i - \{j\}} \delta_{k \rightarrow i}$$

 Can also be viewed as multiplying all messages and dividing by the message from j to i

g by the message from J to 1
$$\delta_{i \to j} = \frac{\sum_{C_i - S_{i,j}} \pi_i^0 \prod_{k \in N_i} \delta_{k \to i}}{\delta_{j \to i}} = \frac{\sum_{C_i - S_{i,j}} \pi_i}{\delta_{j \to i}} \text{"Sepset belief"}$$

$$\mu_{i,j}(S_{i,j})$$

Forms a basis of an alternative way of computing messages

Message Passing: Belief Propagation

Bayesian network

Clique tree

- Root: C₂
- C₁ to C₂ Message: $\delta_{1\to 2}(X_2) = \sum_{X_1} \pi_1^0[X_1, X_2] = \sum_{X_1} P(X_1) P(X_2 \mid X_1)$ C₂ to C₁ Message: $\delta_{2\to 1}(X_2) = \sum_{X_3} \pi_2^0[X_2, X_3] \delta_{3\to 2}(X_3)$
- - Sum-product message passing
- Alternatively compute $\pi_2[X_2, X_3] = \delta_{1 \rightarrow 2}(X_2)\delta_{3 \rightarrow 2}(X_3)\pi_2^0[X_2, X_3]$
- And then: "Sepset belief" $\mu_1, (X_2)$

$$\delta_{2\to 1}(X_2) = \underbrace{\sum_{X_1} \pi_2[X_2, X_3]}_{\delta_{1\to 2}(X_2)} = \sum_{X_3} \pi_2^0[X_2, X_3] \delta_{3\to 2}(X_3)$$

→ Thus, the two approaches are equivalent

Message Passing: Belief Propagation

- Based on the observation above,
 - Different message passing scheme, belief propagation
 - Each clique C_i maintains its fully updated beliefs π_i
 - product of initial clique potentials π_i^0 and messages from neighbors $\delta_{k\to i}$
 - Each sepset also maintains its belief $\mu_{i,i}$
 - product of the messages in both direction $\delta_{i \to i}$, $\delta_{i \to i}$
 - The entire message passing process is executed in an equivalent way in terms of the clique and sepset beliefs – π_i 's and μ_{ij} 's.
- Basic idea ($\mu_{i,j} = \delta_{i \rightarrow j} \delta_{j \rightarrow i}$)

- Each clique C_i initializes the belief π_i as π_i^0 (= $\Pi \phi$) and then updates it by multiplying with message updates received from its neighbors.
- Store at each sepset $S_{i,j}$ the previous sepset belief $\mu_{i,j}$ regardless of the direction of the message passed
- When passing a message from C_i to C_{jr} divide the new sepset belief $\sigma_{i,j} = \sum_{C_i = S_{i,i}} \pi_i$ by previous $\mu_{\text{i,j}}$
- Update the clique belief π_j by multiplying with $\frac{\sigma_{i,j}}{\mu_{i,j}}$
- This is called belief update or belief propagation

Message Passing: Belief Propagation

- Initialize the clique tree
- While uninformed cliques exist
 - Select C_i—C_i
 - Send message from C_i to C_i
 - Marginalize the clique over the sepset $\sigma_{i o j} \leftarrow \sum_{C \in S_i} \pi_i$
 - Update the belief at C_j $\pi_j \leftarrow \pi_j \frac{\sigma_{i \rightarrow j}}{\mu_{i,j}}$
 - Update the sepset belief at $C_i C_i$ $\mu_{i,j} \leftarrow \sigma_{i \rightarrow j}$
- Equivalent to the sum-product message passing algorithm?
 - Yes a simple algebraic manipulation, left as PS#2.

Clique Tree Invariant

- Belief propagation can be viewed as reparameterizing the joint distribution
 - Upon calibration we showed $P_{\Phi}(\mathbf{X}) = \frac{\prod_{C_i \in T} \pi_i[C_i]}{\prod_{(C_i \leftrightarrow C_i) \in T} \mu_{i,j}(S_{i,j})}$
 - How can we prove this holds in belief propagation?
 - Initially this invariant holds since $\frac{\prod_{C_i \in T} \pi_i[C_i]}{\prod_{C_i \in C_i \in T} \mu_{i,i}(S_{i,i})} = \frac{\prod_{\phi \in F} \phi}{1} = P_{\Phi}(\mathbf{X})$
 - At each update step invariant is also maintained
 - Message only changes π_i and $\mu_{i,j}$ so most terms remain unchanged
 - We need to show that for new π' , μ' $\frac{\pi'_{i}}{\mu'_{i,j}} = \frac{\pi_{i}}{\mu_{i,j}}$
 - But this is exactly the message passing step $\pi'_{i} = \frac{\mu'_{i,j} \pi_{i}}{\mu_{i,j}}$
- → Belief propagation reparameterizes P at each step

Answering Queries

- Posterior distribution queries on variable X
 - Sum out irrelevant variables from any clique containing X
- Posterior distribution queries on family X,Pa(X)
 - The family preservation property implies that X,Pa(X) are in the same clique.
 - Sum out irrelevant variables from clique containing X,Pa(X)
- Introducing evidence Z=z,
 - Compute posterior of X where X appears in clique with Z
 - Since clique tree is calibrated, multiply clique that contains X and Z with indicator function I(Z=z) and sum out irrelevant variables.
 - Compute posterior of X if X does not share a clique with Z
 - Introduce indicator function I(Z=z) into some clique containing Z and propagate messages along path to clique containing X
 - Sum out irrelevant factors from clique containing X

$$P_{\Phi}\left(\mathbf{X}\right) = \prod_{\phi \in \Phi} \phi \qquad P_{\Phi}(\mathbf{X}, Z = z) = \mathbf{1}\{Z = z\} \prod_{\phi \in \Phi} \phi$$

13

So far, we haven't really discussed how to construct clique trees...

Constructing Clique Trees

- Two basic approaches
 - 1. Based on variable elimination
 - 2. Based on direct graph manipulation
- Using variable elimination
 - The execution of a variable elimination algorithm can be associated with a cluster graph.
 - Create a cluster C_i for each factor used during a VE run
 - Create an edge between C_i and C_j when a factor generated by C_i is used directly by C_i (or vice versa)
- → We showed that cluster graph is a tree satisfying the running intersection property and thus it is a legal clique tree

15

Direct Graph Manipulation

- Goal: construct a tree that is family preserving and obeys the running intersection property
- The induced graph $I_{F,\alpha}$ is necessarily a chordal graph.
 - The converse holds: any chordal graph can be used as the basis for inference.
 - Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Reminder: The induced graph $I_{F,\alpha}$ over factors F and ordering α :
 - Union of all of the graphs resulting from the different steps of the variable elimination algorithm.
 - X_i and X_j are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering

Constructing Clique Trees

- The induced graph $I_{F,\alpha}$ is necessarily a chordal graph.
 - Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Step I: Triangulate the graph to construct a chordal graph H
 - Constructing a chordal graph that subsumes an existing graph H⁰
 - NP-hard to find a minimum triangulation where the largest clique in the resulting chordal graph has minimum size
 - Exact algorithms are too expensive and one typically resorts to heuristic algorithms. (e.g. node elimination techniques; see K&F 9.4.3.2)
- Step II: Find cliques in H and make each a node in the clique tree
 - Finding maximal cliques is NP-hard
 - Can begin with a family, each member of which is guaranteed to be a clique, and then use a greedy algorithm that adds nodes to the clique until it no longer induces a fully connected subgraph.
- Step III: Construct a tree over the clique nodes
 - Use maximum spanning tree algorithm on an undirected graph whose nodes are cliques selected above and edge weight is |C_i∩C_i|
 - We can show that resulting graph obeys running intersection → valid clique tree

Part II PARAMETER LEARNING

19

Learning Introduction

- So far, we assumed that the networks were given
- Where do the networks come from?
 - Knowledge engineering with aid of experts
 - Learning: automated construction of networks
 - Learn by examples or instances

Learning Introduction

- Input: dataset of instances D={d[1],...d[m]}
- Output: Bayesian network
- Measures of success
 - How close is the learned network to the original distribution
 - Use distance measures between distributions
 - Often hard because we do not have the true underlying distribution
 - Instead, evaluate performance by how well the network predicts new unseen examples ("test data")
 - Classification accuracy
 - How close is the structure of the network to the true one?
 - Use distance metric between structures
 - Hard because we do not know the true structure
 - Instead, ask whether independencies learned hold in test data

2.

Prior Knowledge

- Prespecified structure
 - Learn only CPDs
- Prespecified variables
 - Learn network structure and CPDs
- Hidden variables
 - Learn hidden variables, structure, and CPDs
- Complete/incomplete data
 - Missing data
 - Unobserved variables

Parameter Estimation

- Input
 - Network structure
 - Choice of parametric family for each CPD P(X_i|Pa(X_i))
- Goal: Learn CPD parameters
- Two main approaches
 - Maximum likelihood estimation
 - Bayesian approaches

Biased Coin Toss Example

Coin can land in two positions: Head or Tail

- Estimation task
 - Given toss examples x[1],...x[m] estimate
 P(X=h)= θ and P(X=t)= 1-θ
 - Denote by P(H) and P(T) to mean P(X=h) and P(X=t), respectively.
- Assumption: i.i.d samples
 - Tosses are controlled by an (unknown) parameter θ
 - Tosses are sampled from the same distribution
 - Tosses are independent of each other

2

Biased Coin Toss Example

- Goal: find $\theta \in [0,1]$ that predicts the data well
- "Predicts the data well" = likelihood of the data given θ $L(D:\theta) = P(D|\theta) = \prod_{i=1}^{m} P(x[i]|x[1],...,x[i-1],\theta) = \prod_{i=1}^{m} P(x[i]|\theta)$
- Example: probability of sequence H,T,T,H,H

 $L(\langle H, T, T, H, H \rangle : \theta) = P(H \mid \theta)P(T \mid \theta)P(T \mid \theta)P(H \mid \theta)P(H \mid \theta) = \theta^{3}(1 - \theta)^{2}$

Maximum Likelihood Estimator

- Parameter θ that maximizes L(D:θ)
 - In our example, θ =0.6 maximizes the sequence H,T,T,H,H

1

Maximum Likelihood Estimator

- General case
 - Observations: M_H heads and M_T tails
 - Find θ maximizing likelihood $L(M_H, M_T : \theta) = \theta^{M_H} (1 \theta)^{M_T}$
 - Equivalent to maximizing log-likelihood

$$l(M_H, M_T : \theta) = M_H \log \theta + M_T \log(1 - \theta)$$

• Differentiating the log-likelihood and solving for θ we get that the maximum likelihood parameter is:

$$\theta_{MLE} = \frac{M_H}{M_H + M_T}$$

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

CSE 515 – Statistical Methods – Spring 2011