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Sum-Product Message Passing Algorithm
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= Claim: for each clique C;: m[C] = P(C)

= Variable elimination, treating C, as a root clique @ e
= Compute P(X) G
= Find belief n of a clique that contains X and eliminate other RVs. o

= If X appears in multiple cliques, they must agree
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Cligue Tree Calibration

= A clique tree with potentials m,[C] is said to be calibrated if
for all neighboring cliques C;and G “Sepset belief”
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= Key advantage the clique tree inference algorithm

= Computes marginal distributions for all variables P(X;),...,P(X,) using
only twice the computation of the upward pass in the same tree.




Calibrated Clique Tree as a Distribution
= At convergence of the clique tree algorithm, we have that:
Hcia m[C]
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= Clique tree invariant: The clique beliefs n’s and sepset beliefs p’s
provide a re-parameterization of the joint distribution, one that

directly reveals the marginal distributions. s

Distribution of Calibrated Tree

= For calibrated tree

Bayesian network Clique tree
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= Joint distribution can thus be written as

P(C|B)=
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Cligue tree invariant
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An alternative approach for
message passing in clique trees?

Message Passing: Belief Propagation

= Recall the clique tree calibration algorithm
= Upon calibration the final potential (belief) at i is:
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= A message from i to j sums out the non-sepset
variables from the product of initial potential and all
messages except for the one from j to i

_ 0
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= Can also be viewed as multiplying all messages and
dividing by the message from j to i

“Sepset belief”
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=« Forms a basis of an alternative way of computing messages
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Message Passing: Belief Propagation

Bayesian network Clique tree
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Root: G,

C, to C, Message: 9.2(X2) =2, 71X, X 1= 2, PX)P(X,[X,)
C, to C; Message: d:.(X2) =2, 71X, X316;,,(X,)

» Sum-product message passing

Alternatively compute 70X, Xs1=8,,,(X;)8.,,(X3) 7 [X,, X,]
And then: “Sepset belief”ﬂlyz(xz)
D X, X
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- Thus, the two approaches are equivalent

Message Passing: Belief Propagation

= Based on the observation above,
= Different message passing scheme, belief propagation
= Each clique C; maintains its fully updated beliefs r;
= product of initial clique potentials ©? and messages from neighbors 5, _;
= Each sepset also maintains its belief ;;
= product of the messages in both direction &;_; 6;_,;
= The entire message passing process is executed in an equivalent way in terms of
the clique and sepset beliefs — s and p;§'s.

Sy
= Basic idea (b;;=0, .;0; )

= Each clique C; initializes the belief ; as n° (=T]¢) and then updates it by
multiplying with message updates received from its neighbors.

= Store at each sepset S;; the previous sepset belief u;; regardless of the direction
of the message passed

= When passing a message from C; to C;, divide the new sepset belief o;; :Zis T
by previous p;; o T

= Update the clique belief n; by multiplying with f

ij

= This is called belief update or belief propagation
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Message Passing: Belief Propagation

= Initialize the clique tree
= For each clique C; set T H«m o
= For each edge C—C; set ti; <1

= While uninformed cliques exist
= Select C—C;
= Send message from C; to G
= Marginalize the clique over the sepset O, < Zc,fs, . T,
Hij
= Update the sepset belief at C-C; 44 ; <= Oi,;

= Update the belief at C;  7; < 7;

= Equivalent to the sum-product message passing algorithm?

= Yes — a simple algebraic manipulation, left as PS#2. "

Cliqgue Tree Invariant

= Belief propagation can be viewed as reparameterizing
the joint distribution [T =G
= Upon calibration we showed P,(X)= Cer 1
H(ciecj)eT 'ui,j(si,j)

= How can we prove this holds in belief propagation?

Hc, a’l [Ci] _ H¢eF ¢

H(clecj)a 'uixj(sivi) 1

= At each update step invariant is also maintained
= Message only changes r;and p; ; So most terms remain unchanged
= We need to show that for new r, p’  _7i _ 7
Hiy M .

Hi i

= Initially this invariant holds since =P, (X)

= But this is exactly the message passing step

-> Belief propagation reparameterizes P at each step
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Answering Queries

» Posterior distribution queries on variable X
= Sum out irrelevant variables from any clique containing X

» Posterior distribution queries on family X,Pa(X)
= The family preservation property implies that X,Pa(X) are in the
same clique.
= Sum out irrelevant variables from clique containing X,Pa(X)

» Introducing evidence Z=z,

= Compute posterior of X where X appears in clique with Z
= Since clique tree is calibrated, multiply clique that contains X and Z with
indicator function 1(Z=z) and sum out irrelevant variables.
= Compute posterior of X if X does not share a clique with Z

= Introduce indicator function 1(Z=z) into some clique containing Z and
propagate messages along path to clique containing X

= Sum out irrelevant factors from clique containing X

Po(X)=]]¢ P.(XZ=2)=HZ=2]¢

ped ped
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So far, we haven’t really discussed
how to construct clique trees...
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Constructing Clique Trees

= Two basic approaches
= 1. Based on variable elimination
= 2. Based on direct graph manipulation

= Using variable elimination

= The execution of a variable elimination algorithm can be
associated with a cluster graph.

= Create a cluster C, for each factor used during a VE run

= Create an edge between C; and C; when a factor generated by
C, is used directly by C; (or vice versa)

- We showed that cluster graph is a tree satisfying the
running intersection property and thus it is a legal clique tree
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Direct Graph Manipulation

= Goal: construct a tree that is family preserving and obeys the
running intersection property

= The induced graph I¢ , is necessarily a chordal graph.
= The converse holds: any chordal graph can be used as the basis for
inference.

= Any chordal graph can be associated with a clique tree (Theorem 4.12)

= Reminder: The induced graph I , over factors F and ordering a.:

= Union of all of the graphs resulting from the different steps of the variable elimination
algorithm.

= X and X; are connected if they appeared in the same factor throughout the VE

algorithm using o as the ordering @ o
o0 aj
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Constructing Clique Trees

= The induced graph I , is necessarily a chordal graph.
= Any chordal graph can be associated with a clique tree (Theorem 4.12)

= Step I: Triangulate the graph to construct a chordal graph H
= Constructing a chordal graph that subsumes an existing graph H°

= NP-hard to find a minimum triangulation where the largest clique in the resulting
chordal graph has minimum size

= Exact algorithms are too expensive and one typically resorts to heuristic
algorithms. (e.g. node elimination techniques; see K&F 9.4.3.2)
= Step II: Find cliques in H and make each a node in the clique tree
= Finding maximal cliques is NP-hard
= Can begin with a family, each member of which is guaranteed to be a clique,
and then use a greedy algorithm that adds nodes to the clique until it no longer
induces a fully connected subgraph.
= Step III: Construct a tree over the clique nodes

= Use maximum spanning tree algorithm on an undirected graph whose nodes are
cliques selected above and edge weight is |GGl

= We can show that resulting graph obeys running intersection — valid clique tree
17

Example

Q 0 Moralized One possible
Graph Q‘o triangulation

C,D Cluster graph with edge weights e
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1 2 _—2 ~ 2
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Part 11
PARAMETER LEARNING
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Learning Introduction

= So far, we assumed that the networks were given

= Where do the networks come from?
= Knowledge engineering with aid of experts

= Learning: automated construction of networks
« Learn by examples or instances

20




Learning Introduction

= Input: dataset of instances D={d[1],...d[m]}
= Output: Bayesian network

= Measures of success

= How close is the learned network to the original distribution
= Use distance measures between distributions
= Often hard because we do not have the true underlying distribution

= Instead, evaluate performance by how well the network predicts new
unseen examples (“test data”)

» Classification accuracy
= How close is the structure of the network to the true one?
= Use distance metric between structures
= Hard because we do not know the true structure
= Instead, ask whether independencies learned hold in test data
21

Prior Knowledge

= Prespecified structure
= Learn only CPDs
= Prespecified variables
= Learn network structure and CPDs
= Hidden variables
= Learn hidden variables, structure, and CPDs

= Complete/incomplete data

= Missing data
= Unobserved variables

22




Learning Bayesian Networks

= Four types of problems will be covered

= Data

= Prior information

) >

POYIX1,X2)
X1 Xz y° vt
X% [ %0 1 0
X0 | X! 02 08
X;! X0 0.1 09
Xt Xt 0.02 0.98
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I. Known Structure, Complete Data

= Goal: Parameter estimation
= Data does not contain missing values

Initial
network

Input
Data

X, X! y°
X! X0 y°
X, X! y:
X, X0 y°
X! X! y:
X, X! y:
X! X,0 y°

POYIX1,X2)
X Xz y° vt
X% [ %0 1 0
X0 | X! 02 08
X;! X0 0.1 09
Xt | Xt 0.02 0.98
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II. Unknown Structure, Complete Data

= Goal: Structure learning & parameter estimation

= Data does not contain missing values

Initial
network

X0 | X! y° P(YIX1,X2)
X1 | X0 yo X | Xe |Y° y!

Input X, X! yt X;° X0 1 0

Data X, X,0 y0 X;° Xp! 02 08
X! X! yt Xt %0 0.1 09
X, X! yt Xt Xt 0.02 0.98
Xt | %0 yo -

ITII. Known Structure, Incomplete Data

= Goal: Parameter estimation

= Data contains missing values (e.g. Naive Bayes)

Initial
network
!
Xy X, Y

? X,! yo P(YIX1.X2)
X! ? yo X | X Y vt
Input 2 X! ? X;° X0 1 0
Data X, X,0 y0 X;° Xp! 02 08
2 X! yt X;! X0 0.1 09
R RTHEE x! |x%! [002 098
x | 7 |V 26




IV. Unknown Structure, Incomplete Data

= Goal: Structure learning & parameter estimation
= Data contains missing values

kK %) (%)
S =

X, X, Y
? X! yo P(Y X1, X5)
X! ? yo X | X Y vt
Input |2 | % | ? N L
Data X, X,0 Yo X;° Xp! 02 08
? X,! yt X;! X0 0.1 0.9
X, X! 2 Xt Xt 0.02 0.98
1 0
Xq ? y! 27

Parameter Estimation

= Input
= Network structure
= Choice of parametric family for each CPD P(X;|Pa(X))

= Goal: Learn CPD parameters

= Two main approaches
= Maximum likelihood estimation
= Bayesian approaches
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Biased Coin Toss Example

= Coin can land in two positions: Head or Tail @

» Estimation task

= Given toss examples x[1],...x[m] estimate
P(X=h)= 0 and P(X=t)= 1-6

= Denote by P(H) and P(T) to mean P(X=h) and P(X=t),
respectively.

= Assumption: i.i.d samples
= Tosses are controlled by an (unknown) parameter 0
= Tosses are sampled from the same distribution
= Tosses are independent of each other
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Biased Coin Toss Example

= Goal: find 6€[0,1] that predicts the data well

» "Predicts the data well” = likelihood of the data given 6
L(D:0)=P(D|0) =] P(Lil| x[1.... x[i -11,0) =] | ", P(x[i1| 6)

= Example: probability of sequence H,T,T,H,H
L((H,T,T,H,H):6)=P(H |0)P(T |6)P(T |0)P(H | O)P(H | 0) = 6°(1-0)°

L(D:6)

A

L L L
4 02 04 06 08 1 9
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Maximum Likelihood Estimator

= Parameter 0 that maximizes L(D:0)

= In our example, 6=0.6 maximizes the sequence
H,T,T,HH

L(D:6)

L L A L
4 02 04 06 08 1 9 31

Maximum Likelihood Estimator

= General case
= Observations: My, heads and M tails
= Find 6 maximizing likelihood (M, M; :0) = 6" (1-9)™"

= Equivalent to maximizing log-likelihood
I(M,,M; :0)=M log&+M; log(1-0)

» Differentiating the log-likelihood and solving for 6 we get that the
maximum likelihood parameter is: M,

0 =
MLE MH+MT
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