

Part I
 TWO MESSAGE PASSI NG ALGORITHMS

Sum-Product Message Passing Algorithm

Clique tree
$\delta_{2 \rightarrow 3}{ }^{0}[\mathrm{G}, \mathrm{I}]=$
$=\sum_{0} \pi_{2}{ }^{0}[\mathrm{G}, \mathrm{I}, \mathrm{D}] \delta_{1 \rightarrow 2}[\mathrm{D}]$

Belief $\boldsymbol{\pi}_{3}[\mathbf{G}, \mathbf{S}, \mathbf{I}]=$
$\pi_{3}{ }^{0}[G, S, I] \delta_{2 \rightarrow 3}[G, I] \delta_{5 \rightarrow 3}[G, S]$

Clique Tree Calibration

- A clique tree with potentials $\pi_{i}\left[\mathrm{C}_{\mathrm{i}}\right]$ is said to be calibrated if for all neighboring cliques C_{i} and C_{j} :

$$
\sum_{C_{i}-S_{i, j}} \pi_{i}\left[C_{i}\right]=\sum_{C_{j}-S_{i, j}} \pi_{j}\left[C_{j}\right]
$$

- Key advantage the clique tree inference algorithm
- Computes marginal distributions for all variables $P\left(X_{1}\right), \ldots, P\left(X_{n}\right)$ using only twice the computation of the upward pass in the same tree.

Calibrated Clique Tree as a Distribution

- At convergence of the clique tree algorithm, we have that:
- Proof:

$$
P_{\Phi}(\mathbf{X})=\frac{\prod_{c_{i} \in T} \pi_{i}\left[C_{i}\right]}{\prod_{\left(C_{i} \leftrightarrow C_{j}\right) \in T} \mu_{i, j}\left(S_{i, j}\right)}
$$

$$
\begin{aligned}
& \mu_{i, j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{t, j}} \pi_{i}\left[C_{i}\right]=\sum_{C_{i}-S_{i, j}} \pi_{i}^{0}\left[C_{i}\right] \prod_{k \in N_{i}} \delta_{k \rightarrow i} \\
& =\sum_{C_{i}-S_{i, j}} \pi_{i}^{0}\left[C_{i}\right] \delta_{j \rightarrow i}\left(S_{i, j}\right) \prod_{\left.k \in N_{i-i}-j\right)} \delta_{k \rightarrow i} \\
& =\delta_{j \rightarrow i}\left(S_{i, j}\right) \sum_{C_{i}-S_{i, j}} \pi_{i}^{0}\left[C_{i}\right] \prod_{k \in N_{i}-\{j)} \delta_{k \rightarrow i} \text { Definition } \\
& =\delta_{j \rightarrow i}\left(S_{i, j}\right) \delta_{i \rightarrow j}\left(S_{i, j}\right) \quad \delta_{i \rightarrow j}=\sum_{i_{i}-S_{i, j}} \pi_{i}^{0} \prod_{k \in N_{i}-j j} \delta_{k \rightarrow i} \\
& \frac{\prod_{c_{i} \in T} \pi_{i}\left[C_{i}\right]}{\prod_{\left(C_{i} \leftrightarrow C_{j}\right) \in T} \mu_{i, j}\left(S_{i, j}\right)}
\end{aligned}
$$

- Clique tree invariant: The clique beliefs π 's and sepset beliefs μ 's provide a re-parameterization of the joint distribution, one that directly reveals the marginal distributions.

Distribution of Calibrated Tree

- For calibrated tree

Bayesian network
Clique tree
(A)

$$
P(C \mid B)=\frac{P(B, C)}{P(B)}=\frac{\pi_{2}[B, C]}{P(B)}=\frac{\pi_{2}[B, C]}{\mu_{12}[B]}
$$

- Joint distribution can thus be written as

$$
\begin{aligned}
P(A, B, C)=P(A, B) P(C \mid B)=\frac{\pi_{1}[A, B] \pi_{2}[B, C]}{\mu_{2}[B]} \\
\qquad\binom{\text { Clique tree invariant }}{P_{\Phi}(\mathbf{X})=\frac{\prod_{c_{i} \in \mathbb{T}} \pi_{i}}{\prod_{\left(C_{i} \leftrightarrow C_{j}\right) \in T} \mu_{i, j}}}
\end{aligned}
$$

An alternative approach for message passing in clique trees?

Message Passing: Belief Propagation

- Recall the clique tree calibration algorithm
- Upon calibration the final potential (belief) at i is:

$$
\pi_{i}=\pi_{i}^{0} \prod_{k \in N_{i}} \delta_{k \rightarrow i}
$$

- A message from i to j sums out the non-sepset variables from the product of initial potential and all messages except for the one from j to i

$$
\delta_{i \rightarrow j}=\sum_{c_{i}-S_{i, j}} \pi_{i}^{0} \prod_{k \in N_{i}-(j)} \delta_{k \rightarrow i}
$$

- Can also be viewed as multiplying all messages and dividing by the message from j to i

$$
\delta_{i \rightarrow j}=\frac{\sum_{c_{i}-S_{i, j}} \pi_{i}^{0} \prod_{k \in N_{i}} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}=\frac{\sum_{c_{i}-S_{i, i}} \pi_{i}}{\delta_{j \rightarrow i}} \text { "Sepset belief" } \mu_{i, j}\left(S_{i, j}\right)
$$

- Forms a basis of an alternative way of computing messages

Message Passing: Belief Propagation

Bayesian network

Clique tree

- Root: C_{2}
- C_{1} to C_{2} Message: $\delta_{1 \rightarrow 2}\left(X_{2}\right)=\sum_{X_{1}} \pi_{1}^{0}\left[X_{1}, X_{2}\right]=\sum_{X_{1}} P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right)$
- C_{2} to C_{1} Message: $\delta_{2 \rightarrow 1}\left(X_{2}\right)=\sum_{X_{3}} \pi_{2}^{0}\left[X_{2}, X_{3}\right] \delta_{3 \rightarrow 2}\left(X_{3}\right)$
- Sum-product message passing
- Alternatively compute $\pi_{2}\left[X_{2}, X_{3}\right]=\delta_{1 \rightarrow 2}\left(X_{2}\right) \delta_{3 \rightarrow 2}\left(X_{3}\right) \pi_{2}^{0}\left[X_{2}, X_{3}\right]$
- And then: "Sepset belief" $\mu_{1,2}\left(X_{2}\right)$

$$
\delta_{2 \rightarrow 1}\left(X_{2}\right)=\frac{\sum_{X_{2}} \pi_{2}\left[X_{2}, X_{3}\right]}{\delta_{1 \rightarrow 2}\left(X_{2}\right)}=\sum_{X_{3}} \pi_{2}^{0}\left[X_{2}, X_{3}\right] \delta_{3 \rightarrow 2}\left(X_{3}\right)
$$

\rightarrow Thus, the two approaches are equivalent

Message Passing: Belief Propagation

- Based on the observation above,
- Different message passing scheme, belief propagation
- Each clique C_{i} maintains its fully updated beliefs π_{i}
- product of initial clique potentials $\pi_{i}{ }^{0}$ and messages from neighbors $\delta_{k \rightarrow i}$
- Each sepset also maintains its belief $\mu_{\mathrm{i}, \mathrm{j}}$
- product of the messages in both direction $\delta_{i \rightarrow j}, \delta_{j \rightarrow i}$
- The entire message passing process is executed in an equivalent way in terms of the clique and sepset beliefs $-\pi_{\mathrm{i}}{ }^{\prime} \mathrm{s}$ and $\mu_{\mathrm{i}, \mathrm{j}}{ }^{\prime} \mathrm{s}$.
- Basic idea ($\mu_{\mathrm{i}, \mathrm{j}}=\delta_{\mathrm{i} \rightarrow \mathrm{j}} \delta_{\mathrm{j}-\mathrm{i}}$)

- Each clique C_{i} initializes the belief π_{i} as $\pi_{\mathrm{i}}^{0}(=\Pi \phi)$ and then updates it by multiplying with message updates received from its neighbors.
- Store at each sepset $S_{i, j}$ the previous sepset belief $\mu_{i, j}$ regardless of the direction of the message passed
- When passing a message from C_{i} to C_{j}, divide the new sepset belief $\sigma_{\mathrm{i}, \mathrm{j}}=\sum_{C_{i}-S_{\mathrm{i}, \mathrm{j}}} \pi_{i}$ by previous $\mu_{i, j}$
- Update the clique belief π_{j} by multiplying with $\frac{\sigma_{i, j}}{\mu_{i, j}}$
- This is called belief update or belief propagation

Message Passing: Belief Propagation

- Initialize the clique tree
- For each clique C_{i} set
- For each edge $C_{i}-C_{j}$ set

$\pi_{i} \leftarrow \prod_{\phi: \alpha(\phi)=i} \phi$
$\mu_{i, j} \leftarrow 1$
- While uninformed cliques exist
- Select $\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{j}}$
- Send message from C_{i} to C_{j}
- Marginalize the clique over the sepset $\sigma_{i \rightarrow j} \leftarrow \sum_{C_{i}-S_{i, j}} \pi_{i}$
- Update the belief at $\mathrm{C}_{\mathrm{j}} \quad \pi_{j} \leftarrow \pi_{j} \frac{\sigma_{i \rightarrow j}}{\mu_{i, j}}$
- Update the sepset belief at $\mathrm{C}_{\mathbf{i}} \mathrm{C}_{\mathrm{j}} \quad \mu_{i, j} \leftarrow \sigma_{i \rightarrow j}$
- Equivalent to the sum-product message passing algorithm?
- Yes - a simple algebraic manipulation, left as PS\#2.

Clique Tree Invariant

- Belief propagation can be viewed as reparameterizing the joint distribution
- Upon calibration we showed

- How can we prove this holds in belief propagation?
- Initially this invariant holds since $\frac{\prod_{c, \sigma T} \pi_{i}\left[C_{C}\right]}{\prod_{(G, \phi, G, k r} \mu_{l, j}\left(S_{i, j}\right)}=\frac{\prod_{s \in F} \phi}{1}=P_{\phi}(\mathrm{X})$
- At each update step invariant is also maintained
- Message only changes π_{i} and $\mu_{\mathrm{i}, \mathrm{j}}$ so most terms remain unchanged
- We need to show that for new $\pi^{\prime}, \mu^{\prime} \frac{\pi_{i}^{\prime}}{\mu_{i, j}^{\prime}}=\frac{\pi_{i}}{\mu_{i, j}}$
- But this is exactly the message passing step $\pi_{i}^{\prime}=\frac{\mu_{i, j}^{\prime} \pi_{i}}{\mu_{i, j}}$
\rightarrow Belief propagation reparameterizes P at each step

Answering Queries

- Posterior distribution queries on variable X
- Sum out irrelevant variables from any clique containing X
- Posterior distribution queries on family $\mathrm{X}, \mathrm{Pa}(\mathrm{X})$
- The family preservation property implies that $\mathrm{X}, \mathrm{Pa}(\mathrm{X})$ are in the same clique.
- Sum out irrelevant variables from clique containing $\mathrm{X}, \mathrm{Pa}(\mathrm{X})$
- Introducing evidence $\mathrm{Z}=\mathrm{z}$,
- Compute posterior of X where X appears in clique with Z
- Since clique tree is calibrated, multiply clique that contains X and Z with indicator function $\mathbf{I}(Z=z)$ and sum out irrelevant variables.
- Compute posterior of X if X does not share a clique with Z
- Introduce indicator function $\mathbf{I}(Z=z)$ into some clique containing Z and propagate messages along path to clique containing X
- Sum out irrelevant factors from clique containing X

$$
P_{\Phi}(\mathbf{X})=\prod_{\phi \in \Phi} \phi \quad P_{\Phi}(\mathbf{X}, Z=z)=\mathbf{1}\{Z=z\} \prod_{\phi \in \mathcal{\Phi}} \phi
$$

So far, we haven't really discussed how to construct clique trees.

Constructing Clique Trees

- Two basic approaches
- 1. Based on variable elimination
- 2. Based on direct graph manipulation

- Using variable elimination

- The execution of a variable elimination algorithm can be associated with a cluster graph.
- Create a cluster C_{i} for each factor used during a VE run
- Create an edge between C_{i} and C_{j} when a factor generated by C_{i} is used directly by C_{j} (or vice versa)
\rightarrow We showed that cluster graph is a tree satisfying the running intersection property and thus it is a legal clique tree

Direct Graph Manipulation

- Goal: construct a tree that is family preserving and obeys the running intersection property
- The induced graph $\mathrm{I}_{\mathrm{F}, \alpha}$ is necessarily a chordal graph.
- The converse holds: any chordal graph can be used as the basis for inference.
- Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Reminder: The induced graph $\mathrm{I}_{\mathrm{F}, \alpha}$ over factors F and ordering α :
- Union of all of the graphs resulting from the different steps of the variable elimination algorithm.
- X_{i} and X_{j} are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering

Constructing Clique Trees

- The induced graph $I_{F, \alpha}$ is necessarily a chordal graph.
- Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Step I: Triangulate the graph to construct a chordal graph H
- Constructing a chordal graph that subsumes an existing graph H^{0}
- NP-hard to find a minimum triangulation where the largest clique in the resulting chordal graph has minimum size
- Exact algorithms are too expensive and one typically resorts to heuristic algorithms. (e.g. node elimination techniques; see K\&F 9.4.3.2)
- Step II: Find cliques in H and make each a node in the clique tree
- Finding maximal cliques is NP-hard
- Can begin with a family, each member of which is guaranteed to be a clique, and then use a greedy algorithm that adds nodes to the clique until it no longer induces a fully connected subgraph.
- Step III: Construct a tree over the clique nodes
- Use maximum spanning tree algorithm on an undirected graph whose nodes are cliques selected above and edge weight is $\left|\mathrm{C}_{\mathrm{i}} \cap \mathrm{C}_{\mathrm{j}}\right|$
- We can show that resulting graph obeys running intersection \rightarrow valid clique tree

Example

Cluster graph with edge weights

Part II PARAMETER LEARNING

Learning Introduction

- So far, we assumed that the networks were given
- Where do the networks come from?
- Knowledge engineering with aid of experts
- Learning: automated construction of networks
- Learn by examples or instances

Learning Introduction

- Input: dataset of instances $\mathrm{D}=\{\mathrm{d}[1], \ldots \mathrm{d}[\mathrm{m}]\}$
- Output: Bayesian network
- Measures of success
- How close is the learned network to the original distribution
- Use distance measures between distributions
- Often hard because we do not have the true underlying distribution
- Instead, evaluate performance by how well the network predicts new unseen examples ("test data")
- Classification accuracy
- How close is the structure of the network to the true one?
- Use distance metric between structures
- Hard because we do not know the true structure
- Instead, ask whether independencies learned hold in test data

Prior Knowledge

- Prespecified structure
- Learn only CPDs
- Prespecified variables
- Learn network structure and CPDs

- Hidden variables

- Learn hidden variables, structure, and CPDs
- Complete/incomplete data
- Missing data
- Unobserved variables

Learning Bayesian Networks

- Four types of problems will be covered

- Prior information

I. Known Structure, Complete Data

- Goal: Parameter estimation
- Data does not contain missing values

III. Known Structure, Incomplete Data

- Goal: Parameter estimation
- Data contains missing values (e.g. Naïve Bayes)

IV. Unknown Structure, Incomplete Data

- Goal: Structure learning \& parameter estimation
- Data contains missing values

Parameter Estimation

- Input
- Network structure
- Choice of parametric family for each CPD $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- Goal: Learn CPD parameters
- Two main approaches
- Maximum likelihood estimation
- Bayesian approaches

Biased Coin Toss Example

- Coin can land in two positions: Head or Tail
- Estimation task
- Given toss examples $x[1], \ldots x[m]$ estimate $P(X=h)=\theta$ and $P(X=t)=1-\theta$
- Denote by $P(H)$ and $P(T)$ to mean $P(X=h)$ and $P(X=t)$, respectively.
- Assumption: i.i.d samples
- Tosses are controlled by an (unknown) parameter θ
- Tosses are sampled from the same distribution
- Tosses are independent of each other

Biased Coin Toss Example

- Goal: find $\theta \in[0,1]$ that predicts the data well
- "Predicts the data well" $=$ likelihood of the data given θ

$$
L(D: \theta)=P(D \mid \theta)=\prod_{i=1}^{m} P(x[i] \mid x[1], \ldots, x[i-1], \theta)=\prod_{i=1}^{m} P(x[i] \mid \theta)
$$

- Example: probability of sequence $\mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{H}$
$L(\langle H, T, T, H, H\rangle: \theta)=P(H \mid \theta) P(T \mid \theta) P(T \mid \theta) P(H \mid \theta) P(H \mid \theta)=\theta^{3}(1-\theta)^{2}$

Maximum Likelihood Estimator

- Parameter θ that maximizes $L(D: \theta)$
- In our example, $\theta=0.6$ maximizes the sequence H,T,T,H,H

θ

Maximum Likelihood Estimator

- General case
- Observations: M_{H} heads and M_{T} tails
- Find θ maximizing likelihood $L\left(M_{H}, M_{T}: \theta\right)=\theta^{M_{H}}(1-\theta)^{M_{T}}$
- Equivalent to maximizing log-likelihood

$$
l\left(M_{H}, M_{T}: \theta\right)=M_{H} \log \theta+M_{T} \log (1-\theta)
$$

- Differentiating the log-likelihood and solving for θ we get that the maximum likelihood parameter is:

$$
\theta_{\text {MLE }}=\frac{M_{H}}{M_{H}+M_{T}}
$$

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

