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Qutline

= Approximate Inference
= Inference as optimization
= Generalized Belief Propagation

|:> = Propagation with approximate messages <«
« Factorized messages
= Approximate message propagation

= Structured variational approximations

= Learning Undirected Models




Propagation w. Approximate Msgs

» General idea

= Perform BP (or GBP) as before, but propagate messages
that are only approximate

= Modular approach
= General inference scheme remains the same
= Can plug in many different approximate message computations

Factorized Messages

= Keep internal structure of the cliques in the tree

= Calibration involves sending messages that are
joint over three variables

= Idea: simplify messages usi(v

representatiol LX
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Computational Savings 1/2

= Answering queries in Cluster 2
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Computational Savings 2/2

= Answering queries in Cluster 2
= Exact inference: z,=7)-6,,,-5,,,
= Exponential in joint space of cluster 2 (6 variables)
» Approximate inference with factored messages

= Notice that subnetwork with factored messages is a tree
= Perform efficient exact inference (\0)1 subtree to answer queries
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Factor Sets

= A factor set $={¢,...,d} provides a compact
representation for high-dime@nal fact

= Belief propagation Sw )
= Multiplication of factor sets \,K.f %

« Easy: simply the union of the factors in egel factor set multiplied
» Marginalization-ef factor set: inference in simplified_network

Global Approximate Inference

= Inference as optimization

= Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
= Analyze approximation guarantees

= Propagation with approximate messages
= Factorized messages

|:> = Approximate message propagation
= Structured variational approximations




Approximate Message Propagat|n¢

= Input =
= Clique tree (or(——

= Assignments of original factors n° to(clusters/cliques
= N

= The factorized form of each sepset <-

= Can be represented by a network for each —C) that
speC|f|es the factorization (in previous examples we assumec{l\ \

= Two strategies for approximate message
propagation
= Sum-product message passing scheme «—
= Belief update messages

Sum-Product Propagation

= Same propagation scheme as in exact inference

= Select a root <—

= Propagate messages towards the root

= Each cluster collects messages from its neighbors and sends «
outgoing messages when possible  <—

= Propagate messages from the root <—

= Each message passing perform ‘@ on <
cluster §

= Terminates in a fixed number of iterations

= Note: final marginals at each variable are not exact
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Message Passing: Belief Propagation

= Same as BP but with approximate messages

= Initialize the clique tree
= For each clique C;set 7, <—H¢za(¢)@j
= For each edge C—C;set ;<1

—e—

= While unset cliques exist o
= Select C—C; Approximation

= Send message from C; to
= Marginalize the clique over the sepset

= Update the belief at C; 7; < 7 F
ij

- Update the sepset at C—C; /4 < 0,

Two message passing schemes differ in approximate inference
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Global Approximate Inference

= Inference as optimization
\/ = Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
\) = Analyze approximation guarantees
= Propagation with approximate messages )
= Factorized messages @:(LM ]
= Approximate message propagation
:>- Structured variational approximations €<— (g
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Structured Variational A

= Select a simple family of distri
» Find QeQ that maximizeq F[P,
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Mean Field Approximation

= Q0= 1Q(X) «
= (Q Joses much of the information of P

= Approximation is computationally attractive &
= Every query in Q is simple to compute

= Qs easy to represent f '
X f X b & &)
X,

//://
Iv » [T @ @
X3 Xs3p) X33 @ @ @

P- — Markov grid network Q — Mean field network
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Mean Field Approximation

= The energy functional is easy to compute, even for
networks where inference is complex

= The energy functional for a fully factored distribution Q
can be rewritten simply as a sum of expectatlons each
one over 3 et of variables.
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Mean Field Maximization

= Maximizing the Energy Functional of Mean Field

. that maX|m|zes Q-

= Subject to forall i: = Q(x) 1

$=

rid network Q — Mean field network
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Mean Field Maximization

= Theorem: ‘ is a local maximum of the mean field
given Q(X,),--Q(X.1),QXix1),---Q(X,) if and only if

Q(X)—Z—GXD{ZE [In¢|x]}

i geF

= Proof in K&F on pages 451-452 <—
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— Markov grid network Q — Mean field network
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This constant can be “absorbed”

Q(Xi) = Zi(:_\xp{EQ[m PF (Xi | X_i)]} <\$into the normalizing function.

= Q(x) is the Geometric average of Pe(x|X.,)

= Relative to the probability distribution < v
= In this sense, marginal is “consistent” with other marginals

=N

\/WV
= Arithmetic average with respect to
18




Mean Field: Algorithm

= Since terms that do not involve x; can be
“absorbed” into the normalization constant,

= Simplify: Q(Xi)zziexp Eoling| x]

= To: Q(x,) _—exp{ I%%[In $U,, }
G s

. Note:@does not appear on right hand side
= Can solve and reach optimal,Q(x;) in one step

= Note: step is only optimal given all other Q(X;) (j#i)

= Suggests an iterative algorithm: in each step, find the optimal

Q(x), given all the other Q(X;) (j=i)

« Convergence guaranteed to local maxima since each step

improves F[P,Q] QU P %M
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Structured Approximations

= Can use Q that are increasingly complex fog(*)

= As long as Q is easy (=inference feasible)
efficient update equations can be derived

Maximize F[P,Q]

J
i
®© ©
§© ©

P- — Markov grid network Mean field network
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LEARNING UNDIRECTED
GRAPHICAL MODELS

CSE 515 — Statistical Methods — Spring 2011
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Learning Undirected Graphs

:>- The likelihood function
= Log-linear representation
= Properties of the likelihood functionz
Learning parameters (weights)
= Maximum likelihood estimation
= Generatively vs Discriminatively
Learning with alternative goals
Learning with incomplete data

Learning structure (features)

22




The Likelihood Function 1/2

= Consider the very simple network,
parameterized by two potentiz

and ¢, (B,C) D

= The log-likelihood of an instance @ :

InP(a,b,c)=Ing(a,b)+Ing,(b,c)-InZ

» WherelZ js the partition function that ensures
the distribution sums up to 1.

= Now, consider the log-likelihood funcm
data set D containing M instances: 1. bTm]. comiy

e
W’Plh“

1(6:D) =>"[Ing (a[m],b[m )+ In g, (b[m], c[m]) ~In Z(0)] 7,
B S o

p M[b,c]ln¢25\Tc)—M InZ(0)
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The first ana second term involves ¢, and ¢, alone,

respectively.
The third term is the log

ition function In Z, where
9F A %Yé Al

»« InZis afunc i na o, i L’c‘ou les t 0
potentials in the likelihood %unction.
= Consider MLE: In BNs, we could estimate each paramete
tly of the other ones. |Here, when changind ¢}, .Z

€s, ofid,/ that maximizes
JdnZ(@). — In MNs, we cannot estimate each parameter
independently.
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Log-Linear Model 1/2 <

= For example, in the

can define a seas:
A ol _hl
fl(A,B): ];. 'When

\A—— |0, otherwise
Al _ho
0 , otherwise

Y

{

. Lel@)e a data set of M-instange (NBta18
and let F={f,,...f,} be a set of featlres that

model:
10 D)=29{Z fi(f[m])J—M InZ(6)
N i m

N ——ee———— 25

|(e:D)=Z

» Sufficient statistics: sums of the feature values in
the instances in D

= Dividing it by the numbgr of instances M,

@i)l(ﬂ: D)= ¥ OE,[(f[d]1-InZ(0)

= where Ep[f; (d;)] is the empirical expectation o(/fbthat is,
its average frequency in the data set.
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Properties of the leellhood Function

= The likelihood function |s a sum of two functions.

(increasing the parameters d|rectly increages
= Let's examine the second term in more detail.

ihls tezrm)

= One important property of the partition function is tha
it is convex in the parameters ©.

= Proof? The Hessian — the matrix of the function’s
second derivatives — is pgs'Lti%ewﬁs%liL_eﬁnite.

= The likelihood function is eorvex in ©
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Learning Undirected Graphs

= The likelihood function
= Log-linear representation
= Properties of the likelihood function

:>- Learning parameters
= Maximum likelihood estimation
= Generatively vs Discriminatively

Collective classification with HMM, MEMM, CRF
Learning with incomplete data

Learning structure (features)

Learning with alternative objectives
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= For a concave functlon
which the gradlent is 0

?mw

Number of times feature Expected number of times feature
f,is true in data D f. is true according to mod

n Numerlcal optimization @L@jl_em_ascenr_m@
or 2" order-based (Newton’s method)

. Re‘:)\ ires @ each step (slow!) <~
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Conditionally Trained Models 1/2

= We oft?n w?:nt to use akMaF]kov netvr}orwra
particular inference task, where we hav nown set

of observed,variables X and a predetermined set 0
variable atwe want to query
(E X ‘@
Discri
/" e

] a ive traini

aining data conS|st|ng of pairs
specifying assignments to Y
riate gb]ectlve_functlon to use in

, an appro
th|s S|tuat|on is the

lyx(0:D) =

_ Z In P(y[m]@x[m] 0)
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Conditionally Trained Models 2/2

Number of times feature f; Expected number of times feature f; is
is true in data D true according to model

= Deceptively similar to the generative training case!

= Key difference: Expected counts (2" term) are computed as
the summation of counts in M models defined by the different

values of the conditioning varlable A’ E.OE _P le]
[ e N—
= Inference: Inlgenera ~eaeh gradient step

required only @ . When
training CRFs, we must execute_'_ S

smqle tralnlnq mstance m,

2 =
condltlonlng on evidence in a Markov network can only reduce
the computational cost.
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Learning Undirected Graphs

= The likelihood function

= Log-linear representation

= Properties of the likelihood function
= Learning parameters

= Maximum likelihood estimation

= Generati iscriminatively

s Eﬁm with HMM, MEMM, CRF
= Learning with incomplete data

= Learning structure (features)

= Learning with alternative objectives
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Collective Classification

= Taking a set of interrelated instances and jointly
labeling them

le: handwriting recognition

X A sequence of observations

= Use local information
= Exploit correlations

Y Label them with some joint label
= Let’'ddisfuss some of the trade-offs between
differenfmodels that one can apply to this task.

= We focus on th te labeling instances organized
in a sequence (ﬁm EMM, )<
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