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Lecture 17 – May 23, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Approximate Inference & 
Learning undirected Models

Readings: K&F 11.4, 11.5, 20.1, 20.2, 20.3, 20.4

Outline
Approximate Inference

Inference as optimization
Generalized Belief Propagation
Propagation with approximate messages

Factorized messages
Approximate message propagation

Structured variational approximations

Learning Undirected Models
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Propagation w. Approximate Msgs
General idea

Perform BP (or GBP) as before, but propagate messages 
that are only approximate

Modular approach
General inference scheme remains the same
Can plug in many different approximate message computations
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Factorized Messages
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Clique tree

Keep internal structure of the cliques in the tree
Calibration involves sending messages that are 
joint over three variables
Idea: simplify messages using factored 
representation

Example: ][~][~][~],,[~
31212121112131211121 XXXXXX →→→→ = δδδδ
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Computational Savings 1/2
Answering queries in Cluster 2

Exact inference:
Exponential in joint space of cluster 2 (6 variables)
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Computational Savings 2/2
Answering queries in Cluster 2

Exact inference:
Exponential in joint space of cluster 2 (6 variables)

Approximate inference with factored messages
Notice that subnetwork with factored messages is a tree
Perform efficient exact inference on subtree to answer queries

X21

X11 X12

X21

X31 X32

X22

X31

X11

X22

X32

X12

1 2 3

2321
0
22 →→ ⋅⋅= δδππ

],,[~
31211121 XXX→δ 2321

0
22

~~~
→→ ⋅⋅= δδππ ],,[~

32221223 XXX→δ
6



4

Factor Sets
A factor set φ={φ1,...,φk} provides a compact 
representation for high-dimensional factor φ1×,...,×φk

Belief propagation
Multiplication of factor sets

Easy: simply the union of the factors in each factor set multiplied

Marginalization of factor set: inference in simplified network
Example: compute δ2 3
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations
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Approximate Message Propagation
Input

Clique tree (or cluster graph)
Assignments of original factors π0 to clusters/cliques
The factorized form of each sepset

Can be represented by a network for each edge Ci—Cj that 
specifies the factorization (in previous examples we assumed 
empty network)

Two strategies for approximate message 
propagation

Sum-product message passing scheme
Belief update messages
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Sum-Product Propagation
Same propagation scheme as in exact inference

Select a root
Propagate messages towards the root

Each cluster collects messages from its neighbors and sends 
outgoing messages when possible

Propagate messages from the root

Each message passing performs inference on 
cluster

Terminates in a fixed number of iterations

Note: final marginals at each variable are not exact
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Message Passing: Belief Propagation
Same as BP but with approximate messages
Initialize the clique tree

For each clique Ci set 
For each edge Ci—Cj set 

While unset cliques exist
Select Ci—Cj

Send message from Ci to Cj
Marginalize the clique over the sepset

Update the belief at Cj

Update the sepset at Ci–Cj
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Approximation

Two message passing schemes differ in approximate inference
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations
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Structured Variational Approx.
Select a simple family of distributions Q
Find Q∈Q that maximizes F[PF,Q]

13

Mean Field Approximation
Q(x) = ΠQ(Xi)
Q loses much of the information of PF

Approximation is computationally attractive
Every query in Q is simple to compute
Q is easy to represent

X11 X12 X13

X21 X22 X23

X31 X32 X33

PF – Markov grid network

X11 X12 X13

X21 X22 X23

X31 X32 X33

Q – Mean field network
14
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Mean Field Approximation
The energy functional is easy to compute, even for 
networks where inference is complex

The energy functional for a fully factored distribution Q 
can be rewritten simply as a sum of expectations, each 
one over a small set of variables.

The complexity of this expression depends on the size of 
the factors in PF, and not on the topology of the network.
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Mean Field Maximization
Maximizing the Energy Functional of Mean-Field

Find Q(x) = ΠQ(Xi) that maximizes F[PF,Q]
Subject to for all i: Σxi

Q(xi)=1
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X11 X12 X13

X21 X22 X23

X31 X32 X33

PF – Markov grid network

X11 X12 X13

X21 X22 X23

X31 X32 X33

Q – Mean field network
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Mean Field Maximization
Theorem: Q(Xi) is a local maximum of the mean field 
given Q(X1),...Q(Xi-1),Q(Xi+1),...Q(Xn) if and only if

Proof in K&F on pages 451-452
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X11 X12 X13

X21 X22 X23

X31 X32 X33

PF – Markov grid network

X11 X12 X13

X21 X22 X23

X31 X32 X33

Q – Mean field network

Mean Field Maximization: Intuition
We can rewrite                                      as:
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Q(xi) is the geometric average of PF(xi|X-i)
Relative to the probability distribution Q
In this sense, marginal is “consistent” with other marginals

In PF we can also represent marginals

Arithmetic average with respect to PF
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Doesn’t depend on xi. 
This constant can be “absorbed” 
into the normalizing function.
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Mean Field: Algorithm
Since terms that do not involve xi can be 
“absorbed” into the normalization constant, 
Simplify:

To: 

Note: Q(xi) does not appear on right hand side
Can solve and reach optimal Q(xi) in one step
Note: step is only optimal given all other Q(Xj) (j≠i)
Suggests an iterative algorithm: in each step, find the optimal 
Q(xi), given all the other Q(Xj) (j≠i)
Convergence guaranteed to local maxima since each step 
improves F[PF,Q]
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Structured Approximations
Can use Q that are increasingly complex
As long as Q is easy (=inference feasible) 
efficient update equations can be derived

X11 X12 X13

X21 X22 X23

X31 X32 X33

PF – Markov grid network

X11 X12 X13

X21 X22 X23

X31 X32 X33

Q – Mean field network
20

Maximize F[PF,Q]
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LEARNING UNDIRECTED 
GRAPHICAL MODELS

CSE 515 – Statistical Methods – Spring 2011 21

Learning Undirected Graphs
The likelihood function

Log-linear representation
Properties of the likelihood function

Learning parameters (weights)
Maximum likelihood estimation
Generatively vs Discriminatively

Learning with alternative goals
Learning with incomplete data
Learning structure (features)
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The Likelihood Function 1/2
Consider the very simple network, 
parameterized by two potentials φ1(A,B) 
and φ2 (B,C)

The log-likelihood of an instance <a,b,c> :

where Z is the partition function that ensures 
the distribution sums up to 1.
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Now, consider the log-likelihood function for a 
data set D containing M instances:
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Sufficient statistics that summarize the data: the joint 
counts M[a,b], M[b,c] in D

The first and second term involves φ1 and φ2  alone, 
respectively.
The third term is the log-partition function ln Z, where

ln Z is a function of both φ1 and φ2; it couples the two 
potentials in the likelihood function.
Consider MLE: In BNs, we could estimate each parameter 
independently of the other ones.  Here, when changing φ1, Z 
changes, possibly changing the value of φ2 that maximizes 
ln Z(Θ).  → In MNs, we cannot estimate each parameter 
independently.
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Log-Linear Model 1/2
Given a set of features F={fi(Di)}i=1,…,k, where fi(Di) is a 
feature function defined over the variables in Di , we 
have:
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Let D be a data set of M instances D={ξ[1],…, ξ[M]}, 
and let F={f1,…,fK} be a set of features that define a 
model:

For example, in the previous example, we 
can define a set of features as:
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Sufficient statistics: sums of the feature values in 
the instances in D
Dividing it by the number of instances M,

where ED[fi (di)] is the empirical expectation of fi, that is, 
its average frequency in the data set.
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Properties of the Likelihood Function
The likelihood function is a sum of two functions.

The first function is linear in the parameters 
(increasing the parameters directly increases this term)
Let’s examine the second term in more detail.

One important property of the partition function is that 
it is convex in the parameters Θ.
Proof? The Hessian – the matrix of the function’s 
second derivatives – is positive semidefinite.

The likelihood function is convex in Θ
27
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Learning Undirected Graphs
The likelihood function

Log-linear representation
Properties of the likelihood function

Learning parameters
Maximum likelihood estimation
Generatively vs Discriminatively

Collective classification with HMM, MEMM, CRF
Learning with incomplete data
Learning structure (features)
Learning with alternative objectives
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Maximum Likelihood Estimation 1/2
The average likelihood is

For a concave function, the maxima are the points at 
which the gradient is 0

The gradient is
29
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Maximum Likelihood Estimation 2/2
The gradient is

The MLE of parameters    satisfies, for all i, 

Numerical optimization: gradient ascent method 
or 2nd order-based (Newton’s method)

Requires inference at each step (slow!)
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Conditionally Trained Models 1/2
We often want to use a Markov network to perform a 
particular inference task, where we have a known set 
of observed variables X and a predetermined set of 
variables Y that we want to query.

Discriminative training
We train the network as a conditional random field (CRF) 
that encodes a conditional distribution P(Y|X)
Training the model encoding P(Y,X) – generative training

Given the training data consisting of pairs 
D={(y[m],x[m])}m=1,…,M, specifying assignments to Y
and X, an appropriate objective function to use in 
this situation is the conditional likelihood.
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Conditionally Trained Models 2/2
The gradient is

Deceptively similar to the generative training case!
Key difference: Expected counts (2nd term) are computed as 
the summation of counts in M models defined by the different 
values of the conditioning variables x[m].

Inference: In generative training, each gradient step 
required only a single execution of inference. When 
training CRFs, we must execute inference for every 
single training instance m, conditioning on x[m]

The inference is executed on a simpler model, because 
conditioning on evidence in a Markov network can only reduce 
the computational cost.
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Learning Undirected Graphs
The likelihood function

Log-linear representation
Properties of the likelihood function

Learning parameters
Maximum likelihood estimation
Generatively vs Discriminatively

Collective classification with HMM, MEMM, CRF
Learning with incomplete data
Learning structure (features)
Learning with alternative objectives
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Collective Classification
Taking a set of interrelated instances and jointly 
labeling them 

Example: handwriting recognition

Let’s discuss some of the trade-offs between 
different models that one can apply to this task.

We focus on the context of labeling instances organized 
in a sequence (HMM, MEMM, CRF)
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b r ea c

Use local information 
Exploit correlations

A sequence of observations

Label them with some joint label
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