Readings: K&F 9.2, 9.3, 9.4, 9.5

Exact Inference: Variable Elimination

Lecture 6-7 – Apr 13/18, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Let's revisit the *Student* Network

- Binary RVs
 - Coherence
 - Difficulty
 - Intelligence
 - Grade
 - SAT
 - Letter
 - Job
 - Happy
- Notations & abbreviations
 - J: a random variable
 - X : a set of random variables
 - Val(J): a set of values on Jj: a value on J
 - |J| : size of Val(J)
 - P(j) : P(J=j)

- Assumptions
 - Local probabilistic models: table CPDs
 - Parameters and structure are given.

Inference Tasks in *Student* Network

- (Conditional) probability queries
 - P(I¹) or P(L=I¹)
 - P(h⁰) or P(H=h⁰)
 - $P(j^1)$ or $P(J=j^1)$
 - $P(j^{1}|i^{1}, d^{1}) \text{ or } P(J=j^{1}|I=i^{0}, D=d^{1})$
 - $P(j^1|h^0, i^1)$ or $P(J=j^0|H=h^0, I=i^1)$
 - $P(j^1, i^0|h^0)$ Query RV(s) Evidence RV(s)
- How to compute the probabilities?
 - Use joint distribution P(C,D,I,G,S,L,J,H)

Naïve Approach

- Use full joint distribution P(C,D,I,G,S,L,J,H)
- Computing $P(J=j^1)$
 - $P(j^1) = P(c^0,d^0,i^0,g^0,s^0,l^0,j^1,h^0)$ + P(c⁰,d⁰,i⁰,g⁰,s⁰,l⁰, j¹,h¹)
 - + P(c⁰,d⁰,i⁰,g⁰,s⁰,l¹, j¹,h⁰)
 - + P(c⁰,d⁰,i⁰,g⁰,s⁰,l¹, j¹,h¹)
 - + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h⁰)
 - + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h¹)
 - + $P(c^0,d^0,i^0,g^0,s^1,l^1, j^1,h^0)$
 - $+ \ P(c^0,d^0,i^0,g^0,s^1,l^1,\ j^1,h^1)$
 - + $P(c^0,d^0,i^0,g^1,s^0,l^0,j^1,h^0)$
 - + $P(c^0,d^0,i^0,g^1,s^0,l^0,j^1,h^1)$
 - + $P(c^0,d^0,i^0,g^1,s^0,l^1,j^1,h^0)$ $+\ P(c^0,d^0,i^0,g^1,s^0,l^1,\ j^1,h^1)$
 - $+\ P(c^0,d^0,i^0,g^1,s^1,l^0,\ j^1,h^0)$
 - $+ \ P(c^0,d^0,i^0,g^1,s^1,l^0,\ j^1,h^1)$
 - + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h⁰)

 - + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h¹)

- Computing P(I=i⁰,J=j¹) $P(i^0,j^1) = P(c^0,d^0,i^0,g^0,s^0,l^0,j^1,h^0)$
 - - + P(c⁰,d⁰,i⁰,g⁰,s⁰,l⁰, j¹,h¹)
 - + $P(c^0,d^0,i^0,g^0,s^0,l^1,j^1,h^0)$
 - + P(c⁰,d⁰,i⁰,g⁰,s⁰,l¹, j¹,h¹)
 - + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h⁰)
 - + P(c⁰,d⁰,i⁰,g⁰,s¹,l⁰, j¹,h¹)
 - + P(c0,d0,i0,g0,s1,l1, j1,h0)
 - + P(c⁰,d⁰,i⁰,g⁰,s¹,l¹, j¹,h¹)
 - + $P(c^0,d^0,i^0,g^1,s^0,l^0,j^1,h^0)$
 - + $P(c^0,d^0,i^0,g^1,s^0,l^0,j^1,h^1)$ + P(c⁰,d⁰,i⁰,g¹,s⁰,l¹, j¹,h⁰)
 - + $P(c^0,d^0,i^0,g^1,s^0,l^1,j^1,h^1)$
 - + $P(c^0,d^0,i^0,g^1,s^1,l^0,j^1,h^0)$
 - + P(c⁰,d⁰,i⁰,g¹,s¹,l⁰, j¹,h¹)
 - + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h⁰) + P(c⁰,d⁰,i⁰,g¹,s¹,l¹, j¹,h¹)
- Computational complexity: exponential blowup
- Exploiting the independence properties?

Naïve Approach

- P(C,D,I,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L,S)P(H|G,J)
- Computing P(J)

 $P(\textbf{j}^{\textbf{1}}) = P(c^0)P(d^0|c^0) \ P(i^0) \ [\ P(g^0|i^0,d^0) \ P(s^0|i^0)P(l^0|g^0)P(\textbf{j}^{\textbf{1}}|l^0,s^0)P(h^0|g^0,\textbf{j}^{\textbf{1}})$

- + P(g⁰|i⁰,d⁰)P(s⁰|i⁰)P(l⁰|g⁰)P(j¹|l⁰,s⁰)P(h¹|g⁰,j¹)
- + $P(g^{0}|i^{0},d^{0})P(s^{0}|i^{0})P(l^{1}|g^{0})P(j^{1}|l^{1},s^{0})P(h^{0}|g^{0},j^{1})$
- $+\ P(g^0|i^0,d^0)P(s^0|i^0)P(I^1|g^0)P(j^1|I^1,s^0)P(h^1|g^0,j^1)\\$
- + $P(g^{0}|i^{0},d^{0})P(s^{1}|i^{0})P(l^{0}|g^{0})P(j^{1}|l^{0},s^{1})P(h^{0}|g^{0},j^{1})$ + $P(g^{0}|i^{0},d^{0})P(s^{1}|i^{0})P(l^{0}|g^{0})P(j^{1}|l^{0},s^{1})P(h^{0}|g^{0},j^{1})$
- $+\ P(g^0|i^0,d^0)P(s^1|i^0)P(l^0|g^0)P(j^1|l^0,s^1)P(h^1|g^0,j^1)\\$
- $+\ P(g^0|i^0,d^0)P(s^1|i^0)P(l^1|g^0)P(j^1|l^1,s^1)P(h^0|g^0,j^1)\\$
- $+\ P(g^0|i^0,d^0)P(s^1|i^0)P(l^1|g^0)P(\textbf{j}^1|l^1,s^1)P(h^1|g^0,\textbf{j}^1)\\$
- + P(g¹|i⁰,d⁰)P(s⁰|i⁰)P(l⁰|g¹)P(j¹|l⁰,s⁰)P(h⁰|g¹,j¹)
- + P(g¹|i⁰,d⁰)P(s⁰|i⁰)P(l⁰|g¹)P(j¹|l⁰,s⁰)P(h¹|g¹,j¹)
- + $P(g^1|i^0,d^0)P(s^0|i^0)P(l^1|g^1)P(j^1|l^1,s^0)P(h^0|g^1,j^1)$
- + P(g¹|i⁰,d⁰)P(s⁰|i⁰)P(l¹|g¹)P(j¹|l¹,s⁰)P(h¹|g¹,j¹)
- $+ P(g^{1}|i^{0},d^{0})P(s^{1}|i^{0})P(l^{0}|g^{1})P(j^{1}|l^{0},s^{1})P(h^{0}|g^{1},j^{1})$
- $+\ P(g^1|i^0,d^0)P(s^1|i^0)P(l^0|g^1)P(\textbf{j}^1|l^0,s^1)P(\textbf{h}^1|g^1,\textbf{j}^1)\\$
- $+\ P(g^1|i^0,d^0)P(s^1|i^0)P(l^1|g^1)P(j^1|l^1,s^1)P(h^0|g^1,j^1)$
- + P(g¹|i⁰,d⁰)P(s¹|i⁰)P(l¹|g¹)P(j¹|l¹,s¹)P(h¹|g¹,j¹)
- Exploiting the structure can reduce computation.
- Let's systematically analyze computational complexity.

Б

Certain terms are

repeated several

times

Let's start with the simplest network ...

Exact Inference Variable Elimination

- Inference in a simple chain
 - Computing P(X₂)

$$P(X_2) = \sum_{x_1} P(x_1, X_2)$$

All the numbers for this computation are in the CPDs of the original Bayesian network

O() operations

7

Exact Inference Variable Elimination

- Inference in a simple chain
 - Computing P(X₂)

• Computing P(X₃) $P(X_2) = \sum_{x_1} P(x_1, X_2) = \sum_{x_1} P(x_1) P(X_2 \mid x_1)$ $P(X_3) =$

- P(X₃|X₂) is a given CPD
- P(X₂) was computed above
- O(|) operations

Exact Inference: Variable Elimination

- Inference in a general chain
 - Computing P(X_n)
 - Compute each P(X_i) from P(X_{i-1})
 - k^2 operations for each computation for X_i (assuming $|X_i|=k$)
 - O(nk²) operations for the inference
 - Compare to kⁿ operations required in summing over all possible entries in the joint distribution over X₁,...X_n
 - Inference in a general chain can be done in linear time!

9

Exact Inference: Variable Elimination

$$\begin{split} P(X_4) &= \sum_{X_1} \sum_{X_2} \sum_{X_3} P(X_1, X_2, X_3, X_4) \\ &= \sum_{X_1} \sum_{X_2} \sum_{X_3} P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_2) P(X_4 \mid X_3) \\ &= \sum_{X_3} P(X_4 \mid X_3) \sum_{X_2} P(X_3 \mid X_2) \sum_{X_1} P(X_1) P(X_2 \mid X_1) \\ &= \sum_{X_3} P(X_4 \mid X_3) \sum_{X_2} P(X_3 \mid X_2) \phi(X_2) \\ &= \sum_{X_3} P(X_4 \mid X_3) \phi(X_3) \\ &= \phi(X_4) \end{split}$$

Pushing summations = Dynamic programming

Inference With a Loop

Computing P(X₄)

$$P(X_4) = \sum_{X_1} \sum_{X_2} \sum_{X_3} P(X_1, X_2, X_3, X_4)$$

$$= \sum_{X_1} \sum_{X_2} \sum_{X_3} P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1) P(X_4 \mid X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \sum_{X_1} P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_{2,3})$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_{2,3})$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_{2,3})$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_2} \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_2, X_3)$$

$$= \sum_{X_3} P(X_4 \mid X_2, X_3) \phi(X_3, X_4)$$

$$= \sum_{X_3} P(X_4 \mid X_3, X_4)$$

$$= \sum_{X_3} P(X_4 \mid X_4, X_4)$$

$$=$$

- - Summations are not "pushed in" as far as before.
 - The scope of φ includes two variables, not one.
- Depends on network structure

Efficient Inference in Bayesnets

- Properties that allow us to avoid exponential blowup in the joint distribution
 - Bayesian network structure some subexpressions depend on a small number of variables
 - Computing these subexpressions and caching the results avoids generating them exponentially many times

Variable Elimination: Factors

- Inference algorithm defined in terms of factors
- Factors generalize the notion of CPDs
- A factor ϕ is a function from value assignments of a set of random variables **D** to real positive numbers \Re^+
 - The set of variables **D** is the scope of the factor
- Thus, the algorithm we describe applies both to Bayesian networks and Markov networks

13

Operations on Factors I: Product

- Let X, Y, Z be three sets of disjoint sets of RVs, and let φ₁(X,Y) and φ₂(Y,Z) be two factors
- We define the <u>factor product φ₁xφ₂ operation</u> to be a factor ψ:Val(X,Y,Z) → ℜ as

Operations on Factors II: Marginalization

- Let X be a set of RVs, Y∉X a RV, and φ(X,Y) a factor
- We define the factor marginalization of Y in X to be a factor ψ : Val(X) $\rightarrow \Re$ as $\psi(X) = \sum_{Y} \phi(X,Y)$
- Also called summing out
- In a Bayesian network, summing out all variables =
- In a Markov network, summing out all variables is the

15

More on Factors

- For factors ϕ_1 and ϕ_2 :
- Factors are commutative

 - $\Sigma_{\mathbf{X}} \Sigma_{\mathbf{Y}} \phi(\mathbf{X}, \mathbf{Y}) = \Sigma_{\mathbf{Y}} \Sigma_{\mathbf{X}} \phi(\mathbf{X}, \mathbf{Y})$
- Products are associative
 - $(\phi_1 x \phi_2) x \phi_3 = \phi_1 x (\phi_2 x \phi_3)$
- If $X \notin Scope[\phi_1]$ (we used this in elimination above)
 - $\Sigma_{\mathbf{X}} \phi_1 \times \phi_2 = \phi_1 \times \Sigma_{\mathbf{X}} \phi_2$

Inference in Chain by Factors

$$P(X_4) = \sum_{X_1} \sum_{X_2} \sum_{X_3} P(X_1, X_2, X_3, X_4)$$

$$= \sum_{X_1} \sum_{X_2} \sum_{X_3} \phi_{X_1} \times \phi_{X_2} \times \phi_{X_3} \times \phi_{X_4}$$

$$= \sum_{X_3} \sum_{X_2} \phi_{X_4} \times \phi_{X_3} \times \left(\sum_{X_1} \phi_{X_1} \times \phi_{X_2} \right)$$
Scope of ϕ_{X_3} and ϕ_{X_4} does not contain X_1

$$= \sum_{X_3} \phi_{X_4} \times \left(\sum_{X_2} \phi_{X_3} \times \left(\sum_{X_1} \phi_{X_1} \times \phi_{X_2} \right) \right)$$
Scope of ϕ_{X_4} does not contain X_2

Sum-Product Inference

- Let Y be the query RVs and Z be all other RVs
- We can generalize this task as that of computing the value of an expression of the form:

$$\phi(Y) = \sum_{\mathbf{Z}} \prod_{\phi' \in F} \phi'$$

- Call it sum-product inference task.
- Effective computation
 - The scope of the factors is limited.
 - → "Push in" some of the summations, performing them over the product of only a subset of factors

Sum-Product Variable Elimination

- Algorithm
 - Given an ordering of variables Z₁,...,Z_n
 - Sum out the variables one at a time
 - When summing out each variable Z,
 - Multiply all the factors φ's that mention the variable, generating a product factor Ψ
 - Sum out the variable from the combined factor Ψ, generating a new factor f without the variable Z

Sum out

- Let X be a set of RVs, Y∉X a RV, and φ(X,Y) a factor
- We define the factor marginalization of Y in X to be a factor ψ:Val(X) → ℜ as ψ(X)= Σ_Yφ(X,Y)
- Also called summing out

Page 14

10

Sum-Product Variable Elimination

- Theorem
 - Let X be a set of RVs
 - Let Y⊆X be a set of query RVs
 - Let Z=X-Y
 - → For any ordering α over **Z**, the above algorithm returns a factor $\phi(\mathbf{Y})$ such that $\phi(\mathbf{Y}) = \sum_{i=1}^{n} \prod_{j=1}^{n} \phi^{j}$
- Bayesian network query P_G(Y)
 - F consists of all CPDs in G $F = \{\phi_{X_i}\}_{i=1}^n$
 - Each $\phi_{X_i} = P(X_i \mid Pa(X_i))$
 - Apply variable elimination for Z=U-Y (summing out Z)

Example – Let's consider a little more complex network...

21

A More Complex Network

• Goal: P(J)

Eliminate: C,D,I,H,G,S,L

 $P(J) = \sum_{L,S,G,H,I,D,C} P(J \mid L,S) P(L \mid G) P(S \mid I) P(G \mid I,D) P(H \mid G,J) P(I) P(C \mid D) P(C)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

• Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_1(D) = \sum_C \phi_C(C)\phi_D(C,D)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

23

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_2(G,I) = \sum_{D} \phi_G(G,I,D) f_1(D)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$

 $=\sum_{L,S,G,H,J}\!\!\!\phi_{_{\!I}}(J,L,S)\phi_{_{\!L}}(L,G)\phi_{_{\!S}}(S,I)\phi_{_{\!H}}(H,G,J)\phi_{_{\!I}}(I)f_{_2}(G,I)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_3(G,S) = \sum_{I} \phi_I(I) \phi_S(S,I) f_2(G,I)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$
- $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)f_3(G,S)$

25

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_4(G,J) = \sum_H \phi_H(H,G,J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I,D}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D)\phi_{H}(H,G,J)\phi_{I}(I)f_{1}(D)$
- $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_5(J, L, S) = \sum_G \phi_L(L, G) f_3(G, S) f_4(G, J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $=\sum_{L,S,G,H,I,D}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D)\phi_{H}(H,G,J)\phi_{I}(I)f_{1}(D)$

 $= \sum_{L,S,G,H,I} \phi_{I}(J,L,S) \phi_{L}(L,G) \phi_{S}(S,I) \phi_{H}(H,G,J) \phi_{I}(I) f_{2}(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

 $= \sum_{L.S.G} \phi_J(J,L,S) \phi_L(L,G) f_3(G,S) f_4(G,J)$

 $= \sum_{I \in S} \phi(J, L, S) f_5(J, L, S)$

27

A More Complex Network

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_6(J, L) = \sum_{S} \phi(J, L, S) f_5(J, L, S)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $=\sum_{L,S,G,H,I,D}\!\!\!\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D)\phi_{H}(H,G,J)\phi_{I}(I)f_{I}(D)$

 $=\sum_{L,S,G,H,I}\!\!\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

 $=\sum_{L,S,G}\!\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

 $= \sum_{L,S} \phi(J,L,S) f_5(J,L,S)$

 $=\sum_{i}f_{6}(J,L)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_7(J) = \sum_I f_6(J, L)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $=\sum_{L,S,G,H,I,D}\!\!\!\phi_I(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)f_I(D)$

 $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

 $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

 $= \sum_{L,S} \phi(J,L,S) f_5(J,L,S)$

 $= \sum f_6(J, L)$

 $= f_7(J)$

D I S

29

A More Complex Network

Goal: P(J)

Eliminate: G,I,S,L,H,C,D (different ordering)

 $P(J) = \sum_{G,I,S,L,H,C,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{S,L,H,C,D}\!\!\phi_J(J,L,S)\phi_D(C,D)\phi_C(C)f_2(D,L,S,J,H)$

 $= \sum_{L,H,C,D} \!\! \phi_D(C,D) \phi_C(C) f_3(D,L,J,H)$

 $= \sum_{H,C,D} \!\! \phi_D(C,D) \phi_C(C) f_4(D,J,H)$

 $= \sum_{C,D} \phi_D(C,D) \phi_C(C) f_5(D,J)$

 $= \sum_{D} f_5(D,J) f_6(D,J)$

 $=f_7(J)$

Note: intermediate

factors tend to be large $f_1(I,D,L,J,H)$

→ ordering matters

Inference With Evidence

- Computing P(Y|E=e)
- Let Y be the query RVs
- Let **E** be the evidence RVs and **e** their assignment
- Let **Z** be all other RVs (U-Y-E)
- The general inference task is

$$\frac{\phi(Y,e)}{\phi(e)} = \frac{\sum_{Z} \prod_{X \in U} \phi_{X|E=e}}{\sum_{Y \in I} \prod_{Y \in U} \phi_{X|E=e}}$$

Inference With Evidence

P(J|H=h,I=i)Goal:

Eliminate: C,D,G,S,L

■ Below, compute f(J,H=h,I=i)

$$=\sum_{I\subseteq G}\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,i)\phi_{H}(h,G,J)\phi_{I}(i)f_{2}(G,i)$$

$$= \sum_{L,S} \phi_J(J,L,S)\phi_S(S,i)f_3(L,J)$$

$$= \sum_{I} f_4(L, J)$$

Differences

- Less number of variables to be eliminated (H and I are excluded)
- Scope of factors tend to be

What's the complexity of variable elimination?

Complexity of $V_{\{a,y,z\}}$ - We define the <u>factor product $\phi_1 \times \phi_2$ operation</u> to be a factor $\psi_1 \times V_2$ ($(x,y,z) \to \Re$ as $\psi(x,y,z) = \phi_1(x,y)\phi_2(y,z)$ Variable elimination con Generating the factors f Summing out Page 13 • Generating the factor $f_i = \phi_1 x,...,x \phi_{k_i}$ through factor product operation

- Let X_i be the scope of f_i
- Each entry requires k_i multiplications to generate
- → Generating factor f_i is
- Summing out
 - Addition operations, at most |Val(X_i)|
- Per factor: O(kN) where N=max_i|Val(X_i)|, k=max_i k_i

Complexity of Variable Elimination

- Start with n factors (n=number of variables)
- Generate exactly one factor at each iteration
 - → there are at most 2n factors
- Generating factors (Say, N=max_i|Val(X_i)|)
 - At most $\Sigma_i |Val(\mathbf{X}_i)| k_i \leq N\Sigma_i k_i \leq N \cdot 2n$ (since each factor is multiplied in exactly once and there are 2n factors)
- Summing out
 - $\Sigma_i |Val(\mathbf{X}_i)| \leq N \cdot n$ (since we have n summing outs to do)
- Total work is linear in N and n, where N=max_i|Val(X_i)|
- Exponential blowup can be in N_i which for factor i can be v^m if factor i has m variables with v values each
- Interpretation: maximum scope size is important.

31

Factors and Undirected Graphs

- The algorithm does not care whether the graph that generated the factors is directed or undirected.
 - The algorithm's input is a set of factors, and the only relevant aspect to the computational is the scope of the factors.
- Let's view the algorithm as operating on an undirected graph H.
 - For Bayesian networks, we consider the moralized Markov network of the original BNs.
- How does the network structure change in each variable elimination step?

- At each step we are computing $f_i = \sum_{X_i} \prod_j f_j(\mathbf{Z}_j)$
- Plot a graph where there is an undirected edge X—Y if variables X and Y appear in the same factor
- Note: this is the Markov network of the probability on the variables that were not eliminated yet

37

VE as Graph Transformation

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_1(D) = \sum_C \phi_C(C) \phi_D(C, D)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

39

VE as Graph Transformation

Goal: P(J)

■ Eliminate: C,D,I,H,G,S,L

• Compute: $f_2(G,I) = \sum_{D} \phi_G(G,I,D) f_1(D)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{L,S,G,H,I,D} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_I(D)$

 $= \sum_{L,S,G,H,I} \phi_{_I}(J,L,S) \phi_{_L}(L,G) \phi_{_S}(S,I) \phi_{_H}(H,G,J) \phi_{_I}(I) f_{_2}(G,I)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_3(G,S) = \sum_I \phi_I(I)\phi_S(S,I)f_2(G,I)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$
- $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)f_3(G,S)$

41

VE as Graph Transformation

■ Goal: P(J)

■ Eliminate: C,D,I,H,G,S,L

• Compute: $f_4(G,J) = \sum_H \phi_H(H,G,J)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_I(D)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

- Goal: P(J)
- Eliminate: C,D,I,H,G,S,L
- Compute: $f_5(J, L, S) = \sum_G \phi_L(L, G) f_3(G, S) f_4(G, J)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $= \sum_{L,S,G,H,I,D} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$
- $= \sum_{L,S,G,H,I} \phi_{I}(J,L,S) \phi_{L}(L,G) \phi_{S}(S,I) \phi_{H}(H,G,J) \phi_{I}(I) f_{2}(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $= \sum_{L.S.G} \phi_J(J,L,S) \phi_L(L,G) f_3(G,S) f_4(G,J)$
- $= \sum_{I.S} \phi(J, L, S) f_5(J, L, S)$

12

VE as Graph Transformation

- Goal: P(J)
- Eliminate: C,D,I,H,G,S,L
- Compute: $f_6(J, L) = \sum_{S} \phi(J, L, S) f_5(J, L, S)$

 $P(J) = \sum_{L,S,G,H,I,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

- $=\sum_{L,S,G,H,I}\!\!\phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{H}(H,G,J)\phi_{I}(I)f_{2}(G,I)$
- $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$
- $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$
- $= \sum_{L,S} \phi(J,L,S) f_5(J,L,S)$
- $=\sum_{i}f_{6}(J,L)$

Goal: P(J)

Eliminate: C,D,I,H,G,S,L

• Compute: $f_7(J) = \sum_L f_6(J, L)$

 $P(J) = \sum_{L,S,G,H,J,D,C} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) \phi_D(C,D) \phi_C(C)$

 $= \sum_{L,S,G,H,I,D} \phi_J(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_G(G,I,D) \phi_H(H,G,J) \phi_I(I) f_1(D)$

 $= \sum_{L,S,G,H,I} \phi_I(J,L,S) \phi_L(L,G) \phi_S(S,I) \phi_H(H,G,J) \phi_I(I) f_2(G,I)$

 $= \sum_{L,S,G,H} \phi_J(J,L,S) \phi_L(L,G) \phi_H(H,G,J) f_3(G,S)$

 $=\sum_{L,S,G}\phi_J(J,L,S)\phi_L(L,G)f_3(G,S)f_4(G,J)$

$$\begin{split} &= \sum_{L,S} \phi(J,L,S) f_5(J,L,S) \\ &= \sum_L f_6(J,L) \end{split}$$

 $= f_7(J)$

The Induced Graph

- The induced graph $I_{F,\alpha}$ over factors F and ordering α :
 - Union of all of the graphs resulting from the different steps of the variable elimination algorithm.
 - X_i and X_i are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering

The Induced Graph

- The induced graph $I_{F,\alpha}$ over factors F and ordering α :
 - Undirected
 - X_i and X_j are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering
- The width of an induced graph width $(I_{K,\alpha})$ is the number of nodes in the largest clique in the graph minus 1
 - Minimal induced width of a graph K is min_awidth(I_{K a})
 - Minimal induced width provides a lower bound on best performance by applying VE to a model that factorized on K
- How can we compute the minimal induced width of the graph, and the elimination ordering achieving that width?
 - No easy way to answer this question.

47

The Induced Graph

- Finding the optimal ordering is NP-hard
- Hopeless? No, heuristic techniques can find good elimination orderings
- Greedy search using heuristic cost function
 - We eliminate variables one at a time in a greedy way, so that each step tends to lead to a small blowup in size.
 - At each point, find the node with smallest cost
 - Possible costs: number of neighbors in current graph, neighbors of neighbors, number of filling edges

Inference should be efficient for certain kinds of graphs ...

Elimination on PolyTrees

- PolyTree Bayesian network
 - At most one path between any two variables
- Theorem: inference is linear in the network representation size

For a fixed graph structure, is there any way to reduce the induced width?

Inference By Conditioning

- General idea
 - Enumerate the possible values of a variable
 - Apply Variable Elimination in a simplified network
 - Aggregate the results

CSE 515 – Statistical Methods – Spring 2011 54