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Exact Inference:
‘ Variable Elimination

Lecture 6-7 — Apr 13/18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Let's revisit the Student Network
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= Notations & abbreviations
= J : a random variable
= X : a set of random variables
= Val(J) : a set of values on J
= :avalue onJ
= |J] : size of Val(J)
= PG)  :PQU=))

= Assumptions
= Local probabilistic models: table CPDs
= Parameters and structure are given. 2




Inference Tasks in Student Network

= (Conditional) probability queries
« P(IY) or P(L=IY)
G = P(h% or P(H=h)
= P(jY) or P(J=j1)

= P(j|it, dt) or P(J=j!|I=i0,D=d)

e e = P(j1]h°, it) or P(I=j°|H=hO, I=i1)
P(j,i°|h°) /r
o Query RV(s)

m 0 Evidence RV(s)

= How to compute the probabilities?
= Use joint distribution P(C,D,I,G,S,L,J,H)

Naive Approach

= Use full joint distribution P(C,D,I,G,S,L,J,H)

= Computing P(J=j1) = Computing P(1=i°,J=j1)

p(Jl) = p(CO’dO,iO’go,SOJO’ jlth) p(iOyjl) = P(CoydoviongVSOJOY jlth)
+ p(CD’dD'iD’gD'SDJD’ jl,hl) + p(coydovioygovsovpy jl,hl)
+ p(CD’dD'iD’gD'SDJl’ jl,hD) + p(coydovioygovsovpy j1,h°)
+ p(CD’dD'iD’gD'SDJl’ jl,hl) + p(coydovioygovsovpy jl,hl)
+ p(CD’dD'iD’gD'SIJD’ jl,hD) + p(coydovioygovslvpy j1,h°)
+ p(CD’dD'iD’gD'SIJD’ jl,hl) + p(coydovioygovslvpy jl,hl)
+ p(CD’dD'iD’gD'SIJI’ jl,hD) + p(coydovioygovslvpy j1,h°)
+ p(CD’dD'iD’gD'SIJI’ jl,hl) + p(coydovioygovslvpy jl,hl)
+ p(CD’dD'iD’glvsﬂJD’ jl,hD) + p(coydovioyglvsovpy j1,h°)
+ p(CD’dD'iD’glvsﬂJD’ jl,hl) + p(coydovioyglvsovpy jl,hl)
+ p(CD’dD'iD’glvsﬂJl’ jl,hD) + p(coydovioyglvsovpy j1,h°)
+ p(CD’dD'iD’glvsﬂJl’ jl,hl) + p(coydovioyglvsovpy jl,hl)
+ p(CD’dD'iD’glvleD’ jl,hD) + p(coydovioyglvslvpY j1,h°)
+ p(CD’dD'iD’glvleD’ jl,hl) + p(coydovioyglvslvpY jl,hl)
+ p(CD’dD'iD’glvlel’ jl,hD) + p(coydovioyglvslvpY j1,h°)
+ p(CD’dD'iD’glvlel’ jl,hl) + p(coydovioyglvslvpY jl,hl)
+ . : + .. :

= Computational complexity: exponential blowup
= Exploiting the independence properties?




Naive Approach

= P(C,D,I1,G,S,LJ,H) =
P(C)P(DIC)P(I)P(G]1,D)P(S|NP(LIG)PQIL,S)P(H|G,J)
= Computing P(J)

P(j*) = P(c®)P(d°|c®) P(i°) [ P(g°]i%,d®) P(s°i®)P(I°|g°)P(i*|I°,s°)P(h°]gP,j*) .
+ P(QP]i°,d)P(s°[i0)P(I°| gO)P(j1]1°,s%)P(hL| gC,i%) Certain terms are
+ P(g°1i%,d°)P(s°|i®9P(I*[g?)P(j*|I*,s)P(h°|g° %)
+ P(g°1i%,d°)P(s°|i®9P(I*[g?)P(i*|I1*,s)P(h*|g°, %) repeated Several
+ PEIREPEOPEIEPEICSHPICH)  times
+ P(g°1i%,d°)P(s![i®9P(I°|g?)P(j*|I°,s)P(h*|g° %)
+ P(g°li%,d°)P(s![i9P(I*[g?)P(i*|I*,s)P(h°|g° %)
+ P(g°li%,d°)P(s!|i9P(I*[g?)P(i*|I1*,s)P(h*|g°, %)
+ P(g!]i%d°)P(s°|i®9P(I°|g1)P(j*]I°,s)P(h°|g" %)
+ P(g!]i%d°)P(s°[i®9P(I°|g})P(j*]|I°,s)P(h*|g" %)
+ P(g!]i%d°)P(s°|i®9P(I*[g})P(i*|I*,s)P(h°|g" %)
+ P(g!]i%d°)P(s°li®9P(I*[gh)P(i*|I*,s)P(h*|g" %)
+ P(g!]i%d°)P(s!|i9P(I°|g1)P(j*]I°,s)P(h°|g" %)
+ P(g!]i%d°)P(s!|i9P(I°|g})P(j*|I°,s)P(h*|g" %)
+ P(g!]i%d°)P(s!|i9P(*[g1)P(i*|I*,s)P(h°|g" %)
+ P(g!]i%d°)P(s!|i9P(*[g)P(i*|I*,sH)P(h*|g" %)

= Exploiting the structure can reduce computation.
= Let's systematically analyze computational complexity.

Let’s start with the simplest
network ...




Exact Inference Variable Elimination

= Inference in a simple chain
= Computing P(X,)

P(Xz) = Z P(Xl’ Xz)

All the numbers for this
computation are in the
CPDs of the original
Bayesian network
O( ) operations

Exact Inference Variable Elimination

= Inference in a simple chain
= Computing P(X,)

= Computing P(X5)
P(Xz) = Z P(Xl’ Xz) = Z P(Xl)P(XZ | Xi)

P(X3)=

= P(X;]Xy) is a given CPD
= P(X,) was computed above

= O( |) operations




Exact Inference: Variable Elimination

= Inference in a general chain
= Computing P(X,)
= Compute each P(X;) from P(X;_;)
= k2 operations for each computation for X; (assuming |X;|=k)
=« O(nk?) operations for the inference
= Compare to k" operations required in summing over all possible
entries in the joint distribution over X,,...X,

= Inference in a general chain can be done in linear time!

Exact Inference: Variable Elimination

P(X,) :ZZZP(XU X2 X5 X,)

- ééép(xlw(xz | XDP(X5 [ X)P(X, 1X5)
_ z P(X, | X) 2 P(Xs | X)L PIXP(X, X))
zgp(m | xa)g“ P(X,| X2)¢EX2)

=§:P(X4 | X3)¢2X3)

=4(X,)

Pushing summations = Dynamic programming

10




Inference With a Loop

= Computing P(X,) @
P(X,) =YD D P(Xy, X, X5, X,) @ @
X, X, X
LSS PGP, KIPOG PO, X ) (&
X; X, Xj
=2 D P(X, 1 X5, X5) D P(X)P(X, | X)P(X, | X,)
Xy X Xy
=Y > P(X,| X, X;)4(X,3) |= Differences
X2 X = Summations are not
= #(X,. X,) “pushed in” as far as
Xz before.
=¢(X,) = The scope of ¢ includes
two variables, not one.
= Depends on network
structure

11

Efficient Inference in Bayesnets

= Properties that allow us to avoid exponential
blowup in the joint distribution

= Bayesian network structure — some subexpressions
depend on a small number of variables

= Computing these subexpressions and caching the
results avoids generating them exponentially many
times

12




Variable Elimination: Factors

= Inference algorithm defined in terms of factors
= Factors generalize the notion of CPDs

= A factor ¢ is a function from value assignments of a set
of random variables D to real positive numbers R*
= The set of variables D is the scope of the factor

= Thus, the algorithm we describe applies both to
Bayesian networks and Markov networks

13

Operations on Factors |: Product

= Let X, Y, Z be three sets of disjoint sets of RVs, and
let ¢,(X,Y) and ¢,(Y,Z) be two factors

= We define the factor product ¢,x¢, operation to be a
factor y:Val(X,Y,Z) > R as
W(X’Y’Z):(I)l(X’Y)d)Z(Y!Z)

X Y z |wxvz

X0y 20

X0y

X Y é, [X,Y]

X0 yo |2 < |
Xyt |3 ~——

x1 y° | 10

x1 yt |5

yioo20

yvioozt
Xty 20

Xty

oo N
[
x %
S %

<< s s =<

Xt oyt 0

Xt oyt o7

14




Operations on Factors Il: Marginalization
= Let X be a set of RVs, YgX a RV, and ¢(X,Y) a factor

We define the factor marginalization of Y in X to be a
factor y:Val(X) = R as y(X)=Z,0(X,Y)

Also called summing out

In a Bayesian network, summing out all variables =
= In a Markov network, summing out all variables is the

15

More on Factors

For factors ¢, and ¢,:

Factors are commutative

= (X, = G1Xd,
= 2 Zv0(X,Y) = ZyZyd(X,Y)

Products are associative
n (G1X02)XD3 = Gy X (X Ps3)

If X¢Scope[d,] (we used this in elimination above)
n Zyd1 X = §1 X

16




Inference in Chain by Factors

P(X,) :ZZZP(XD X2 X5 X,)

Xy X X3

=ZZZ¢X1 X¢x2 X¢x3 X¢x4

X X, Xs Scope of ¢X3 and ¢X4

= Xzaxzz¢><4 X¢x3 X[;qﬁxl X¢XZJ<_ does not contain Xl
Scope of ¢y, does

Y X(qu X[Z¢ » D not contain X,

17

Sum-Product Inference
= Let Y be the query RVs and Z be all other RVs

= We can generalize this task as that of computing
the value of an expression of the form:

o()=211¢

Z §<F

» Call it sum-product inference task.

= Effective computation
= The scope of the factors is limited.

= - “Push in” some of the summations, performing them
over the product of only a subset of factors

18




Sum-Product Variable Elimination

= Algorithm
= Given an ordering of variables Z,,...,Z,,
= Sum out the variables one at a time

= When summing out each variable Z,
= Multiply all the factors ¢’'s that mention the variable,
generating a product factor W
= Sum out the variable from the combined factor W, generating
a new factor £ without the variable Z

sum out T™~_

= Let X be a set of RVs, YeX a RV, and ¢(X,Y) a factor

= We define the factor marginalization of Y in X to be a
factor y:Val(X) = % as y(X)= Z,b(X,Y)

= Also called summing out Page 14

19

Sum-Product Variable Elimination

= Theorem
= Let X be a set of RVs
= Let YcX be a set of query RVs
s Let Z=X-Y
= - For any ordering a over Z, the above algorithm
returns a factor ¢(Y) such that () =>'TI¢

Z ¢g'<F
= Bayesian network query Pg(Y)
= F consists of all CPDsin G F = {¢X
= Each ¢y = P(X; | Pa(Xy)
= Apply variable elimination for Z=U-Y (summing out Z)

n
iJi=1

20




Example — Let’s consider a
little more complex network...

21

A More Complex Network

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L

22




A More Complex Network

= Goal: P@)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(D) = ¢:(C)¢,(C, D)

PW)= 24 .LS)(LG)(S,1)¢:(G,1,D)g, (H,G,3)¢ ()¢ (C, D). (C)

L,S.GH,1,DC

= 24,0, LS) (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)

L,S,G,H,I,D

23

A More Complex Network
n Goal: PJ)

= Eliminate: C,D,I,H,G,S,L G
(D)

= Compute: f(G.1)=>¢(G.1,D)f(D)

P)= 34,3, L.S) (L.G) (S, 1) (G, 1, D)gh, (H,G, 3)g, (1) (C. D). (C) @ e

L,S,G,H,I,D.C

= 24 LS (LG)(S 1) (G.1,D)g, (H,G,3)4 (1)f,(D) o

L,S,G,H,I,D

= 2 4,0.LS) (LG (S, ¢ (H, G, I)g (NF,(G,1)

LS.GH,I 0

24




A More Complex Network

n Goal: PQ)
= Eliminate: C,D,I,H,G,S,L
= Compute: £,(G,S) =Y "¢, (N5 (S, 1) 1,(G, 1)

PI)=  24,LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,I,D.C

= 2 4,,LS) (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)
= 2 4,.LS)(L G (S, ¢y (H,G )¢ (NF,(G,1)
= 2 4,(3,L,S)4 (LG4, (H,G,I)f:(G,S)

25

A More Complex Network

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f.(G.J)=>¢,(H.G.J)

PI)= 24,LS)(LG)(S,1)¢(G,1,D)¢ (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,I,D.C

= LS(;ZH‘,?JD(J, L, S)¢(L,G)és (S, 1)¢e (G, 1, D)4, (H, G, I)g, (1)1,(D)
= LVSZH%(J,L,S)¢L(LiG)¢s(S, Ng,(H.G, )¢ (NF,(G,1)

= L'S‘ZG)'Z;J (3,L,8)¢.(L.G)4, (H,G,1)f,(G,S)

= L;ZGQJ(J, L, S)¢, (L,G)1,(G,S),(G,J)

26




A More Complex Network

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(J,L,S) =Y "¢, (L,G) f,(G,S) f,(G,J)

PO)= 24,.LS)(LG)(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG (S, 1) (G, 1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,.D

= 2 4,.LS) (LG (S, )¢y (H,G D¢ (NF,(G, 1)

LS.GH,I

= 24,0, LS) (LG4 (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

=>¢(J,L,8)f(J,L.S)

27

A More Complex Network

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f(0.L)=2¢0,L9S)fJ.LS)

PI)= 24,(,LS)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

=LLVSSVZZ:‘,%5YZY(CJ,L,S)¢L(L,G)¢S (S, ¢s (G, 1, D)4y, (H,G,3)¢, (1)1,(D)
= LYS‘EGY:H?;;(J,L,S)¢L(LiG)¢S(S, Dy (H,G,3)¢, ()F,(G,1)

= !;Z;f; (3,L,8)4.(L,G)4, (H,G, 1)1,(G, S)

= iéw,L,S)¢L(L|G)f3<e,5)f4<e,3)

=§;(J,L,S)f5(J,L,S)

=LZf:fG(J,L)

28




A More Complex Network

n Goal: PQ)
= Eliminate: C,D,I,H,G,S,L
= Compute: ()= f0.L)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢s(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)
= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G, 1)
= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

#(J,L,8)f,(3,L,S)

2
=3 ,(.L)

=f,(J3)

29

A More Complex Network
= Goal: PQJ) G
= Eliminate: G,I,S,L,H,C,D (different ordering) Q

P)= 34,3, L.S) (L.G) (S, 1) (G.1,D)gh, (H,G, ), (1) (C. D) (C) @ e

= 2. 4,(3,L,5)4 (S, 1), ()¢ (C, D) (C)f,(1,D, L, 3, H)
= Z¢J(J,L,S)¢D(C,D)¢C(C)f2(D,L,S,J,H) o

S,.LHCD

= 2 #(C.D)¢(C)f;(D, L, I, H) Q 0

= 2 #,(C.D)¢.(C)f,(D,J . H)

=E; C.DY(C).0.0) = Note: intermediate
g factors tend to be large

=3 £,(D,3)f,(D,J) f,(1,D,L,J,H)

() - ordering matters

30




Inference With Evidence

Computing P(Y|E=e)

Let Y be the query RVs

Let E be the evidence RVs and e their assignment
Let Z be all other RVs (U-Y-E)

The general inference task is

¢(Y,E) ZH¢X|Eze

Z XeU

#€) DO []¢xee

Y,Z XeU

31

Inference With Evidence
= Goal: P(J|H=h,I=i)
= Eliminate: C,D,G,S,L
= Below, compute f(J,H=h,I=i)
P(J,hi)= > ¢,(3,L,5)¢ (L.G)s(S,i)¢s (G,i,D)g, (h,G, )¢, (i), (C, D)gc (C)

L,S,G,DC

= 2.4,(3,L.S)4 (L,G)gs(S.i)¢s (G.i, D)y (0, G, 3)¢, () f,(D)

L,S,G,D

24,3, L,S) (LG (S, (h, G, )¢, ()F,(G,)

$,(J,L,S)g5 (S, (L, J)

%
s

f,(L,J)

s Differences
= Less number of variables to be
eliminated (H and I are excluded)

= Scope of factors tend to be
smaller.

= fs(J)

32




What’s the complexity of
variable elimination?

33
CompleXIty Of VE = We define the factor product ¢, x4, operation to be a
factor y:Val(X,Y,Z) - R as
WY, Z)= (X, Y)o(Y,Z) S
= Variable elimination con e
. . XV [&:D0] vz |wixn”] 7, o
" Gener:fltlng the factors f =R 1?/:_ .
= Summing out vy s v v ln bace 13
age

Generating the factor f=¢, x,...,x (I)ki through factor
product operation

= Let X; be the scope of f;

= Each entry requires k; multiplications to generate

= —> Generating factor f; is

Summing out
= Addition operations, at most |Val(X;)|

» Per factor: O(kN) where N=max;|Val(X;)|, k=max;k;

34




Complexity of Variable Elimination

= Start with n factors (n=number of variables)
= Generate exactly one factor at each iteration
—> there are at most 2n factors

= Generating factors (Say, N=max;|Val(X;)|)
= At most Z;|Val(X;)|k; £ Nk, < N-2n (since each factor is multiplied in
exactly once and there are 2n factors)

= Summing out
= X|Val(X;)] £ N-n (since we have n summing outs to do)

= Total work is linear in N and n, where N=max;|Val(X;)|

= Exponential blowup can be in N; which for factor i can be v™ if
factor i has m variables with v values each

= Interpretation: maximum scope size is important.
35

Factors and Undirected Graphs

= The algorithm does not care whether the graph that
generated the factors is directed or undirected.

= The algorithm’s input is a set of factors, and the only relevant aspect
to the computational is the scope of the factors.

= Let’'s view the algorithm as operating on an undirected
graph H.

= For Bayesian networks, we consider the moralized Markov network
of the original BNs.

= How does the network structure change in each variable
elimination step?

36




VE as Graph Transformation
= At each step we are computing  f,=>"[]f,(Z,)
Xi ]

= Plot a graph where there is an undirected edge
X—Y if variables X and Y appear in the same
factor

= Note: this is the Markov network of the probability
on the variables that were not eliminated yet

37

VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L

PO)= 24 .LS)(LG)(S,1)¢:(G,1,D)g, (H,G,3)¢ ()¢5 (C, D). (C)

L,S.GH,1,DC

38




VE as Graph Transformation

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f.(D)=2 ¢(C)¢,(C,D)

PO)= 24 .LS)(LG)(S,1)¢:(G,1,D)g, (H,G,3)¢ ()¢5 (C, D). (C)

L,S.GH,1,DC

= 24,0, LS)h (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)

L,S,G,H,I,D

39

VE as Graph Transformation

n Goal: PJ)
s Eliminate: C,D,I,H,G,S,L
= Compute: f,(G.1)=>"4:(G,1,D)f,(D)

PO)= 24.LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,I,D.C

= 24 LS (LG (S 1) (G, 1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,,LS) (LG (S, )¢ (H,G,I)g (NF,(G,1)

LSGH.I

40




VE as Graph Transformation

s Goal: P(J) fill edge
= Eliminate: C,D,I,H,G,S,L
L} Compute f3(G,S)=Z¢|(|)¢S(S,|)f2(G,|)

PO)= 24 .LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,1,DC

= 24,3, LS)h (LG (S, 1)¢s (G, 1, D)y (H,G,3)¢ (1)f,(D)
= 2 4,.LS)(L G (S, )¢y (H,G, )¢ (NF,(G,1)
= 2 4,(3,L,S)4 (LG4, (H,G,I)f:(G,S)

41

VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L
= Compute: £.(G.J)=> 4,(H.G.J)

PO)= 24.LS)(LG)(S,1)¢:(G,1,D)g (H,G,3)¢ ()¢ (C, D). (C)

L,S,G,H,I,D.C

= LSGZH‘,?JD(J, L, S)¢.(L,G)és (S, 1)¢e (G, 1, D)4, (H, G, I)g, (1)1,(D)
= LVSZH%(J,L,S)¢L(LiG)¢s(S, Ng,(H,G, )¢ (NF,(G,1)

= L'S‘ZG)'Z;J (3,L,8)4.(L.G)4, (H,G,I)f,(G,S)

= L;ZGQJ(J, L, S)¢, (L,G)f,(G,S),(G,J)

42




VE as Graph Transformation

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,J.L.S)=> 4 (LG)f(G.9)(G.J)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G,1)

L,S.G.H,I

= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

L,S,GH

= Z¢J (J, L,S)¢L(L,G)f3(G,S)f4(G,J)

L.S.G

=>¢(J,L,8)f(J,L,S)
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VE as Graph Transformation

n Goal: PJ)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(3,1)=¢0,L,8)f,(J,L,S)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

=LLVSSV(§%5Y;(CJ,L,S)¢L(L,G)¢S (S, ¢s (G, 1, D)4y, (H,G,3), (1)1,(D)
= LYS‘EGY:H?%(J,L,S)¢L(LiG)¢S(S, Dy (H,G,3)g, (NF,(G,1)

= Lgfj (3,L,8)4.(L,G)4, (H,G, 9)£,(G,S)

= iéw,L,S)¢L(L|G)f3<e,3)f4<e,3)

=§(;(J,L,S)f5(.],L,S)

=LZf:f6(J,L)
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VE as Graph Transformation

s Goal: P(J)
= Eliminate: C,D,I,H,G,S,L
= Compute: f,(9)=> fQ,L)

PO)= 24,(J,L,S)4(LG)¢(S,1)¢:(G,1,D)g, (H,G, I)¢, (1) (C, D). (C)

L,S,G,H,1,DC

= 2 4L (LG)(S, 1) (G.1,D)g, (H,G,3)4 (1)f,(D)

L,S,G,H,I,D

= 2 4,.LS) (LG (S, ¢ (H,G D¢ (NF,(G,1)

L,S.G.H,I

= 2 4,(,LS) (LG4, (H,G,I)f(G,S)

= Y $,(3.L.S)4(L,G)f,(G,9)1,(G.,J)
=>¢(J,L,8)f(J,L,S)
=Y (.1

= f7('~])
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The Induced Graph

= The induced graph I , over factors F and ordering o

= Union of all of the graphs resulting from the different steps
of the variable elimination algorithm.

= X; and X; are connected if they appeared in the same factor
throughout the VE algorithm using a as the ordering

Original
graph

Induced
graph
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The Induced Graph

= The induced graph I , over factors F and ordering o
= Undirected

= X and X; are connected if they appeared in the same factor
throughout the VE algorithm using o as the ordering

= The width of an induced graph width(l, ,) is the number
of nodes in the largest clique in the graph minus 1
= Minimal induced width of a graph K is min width(l )

= Minimal induced width provides a lower bound on best
performance by applying VE to a model that factorized on K

= How can we compute the minimal induced width of the
graph, and the elimination ordering achieving that width?
= No easy way to answer this question.
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The Induced Graph

= Finding the optimal ordering is NP-hard

= Hopeless? No, heuristic techniques can find good
elimination orderings

» Greedy search using heuristic cost function

= We eliminate variables one at a time in a greedy way, S0
that each step tends to lead to a small blowup in size.

= At each point, find the node with smallest cost

= Possible costs: number of neighbors in current graph,
neighbors of neighbors, number of filling edges
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Inference should be efficient
for certain kinds of graphs ...

Elimination On Trees

m Tree Bayesian network
= Each variable has at most one parent
= All factors involve at most two variables 0

= Elimination @

= Eliminate leaf variables
= Maintains tree structure Q

= Induced width =1 Q
© (6)
L
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Elimination on PolyTrees

= PolyTree Bayesian network
= At most one path between any two variables

s Theorem: inference is linear in the
network representation size

51

For a fixed graph structure,
IS there any way to reduce
the induced width?
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Inference By Conditioning

= General idea
= Enumerate the possible values of a variable
= Apply Variable Elimination in a simplified network
= Aggregate the results

©
® O GLS|1I)
©
©
©

Transform CPDs of G and S
to eliminate | as parent

Observe |
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