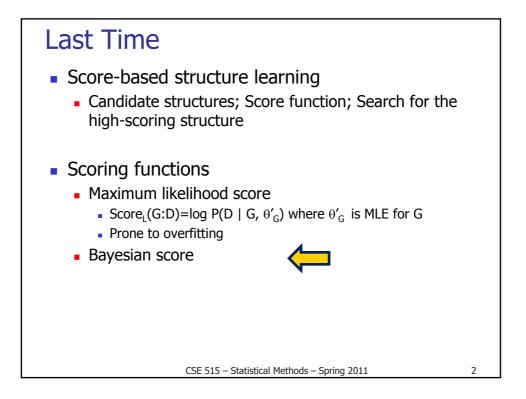
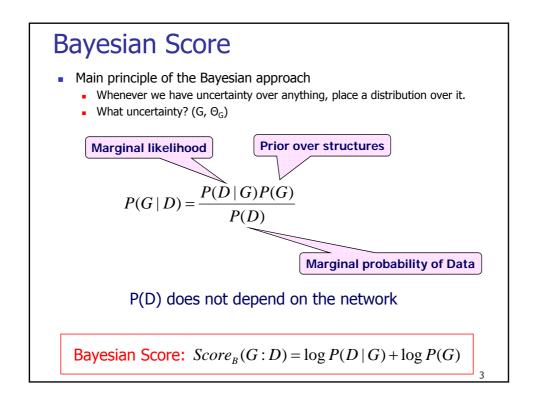
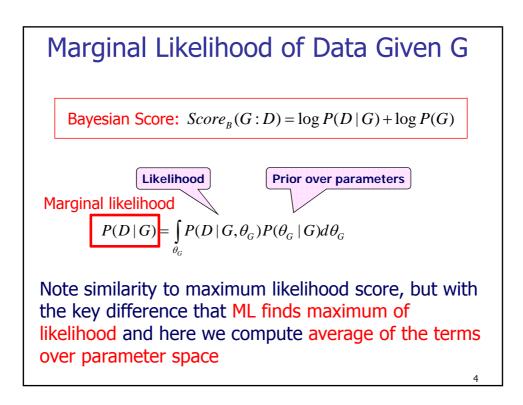
Readings: K&F 18.3, 18.4, 18.5, 18.6

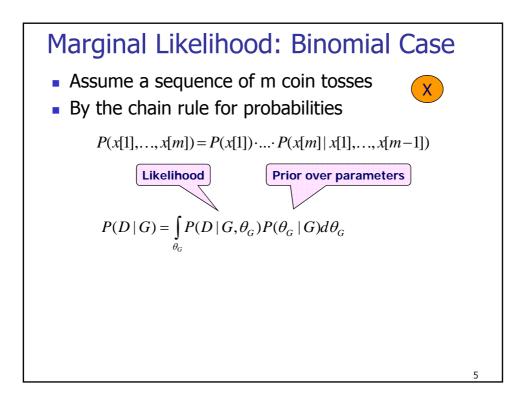
Lecture 11 – May 2, 2011 CSE 515, Statistical Methods, Spring 2011

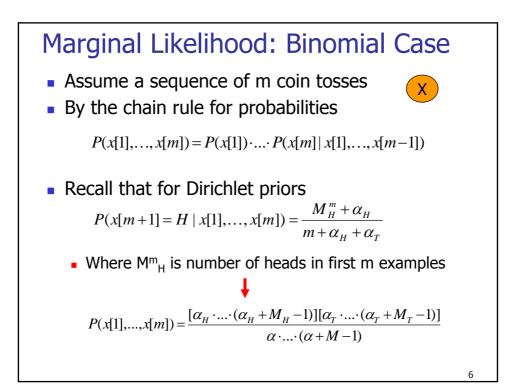
Instructor: Su-In Lee University of Washington, Seattle

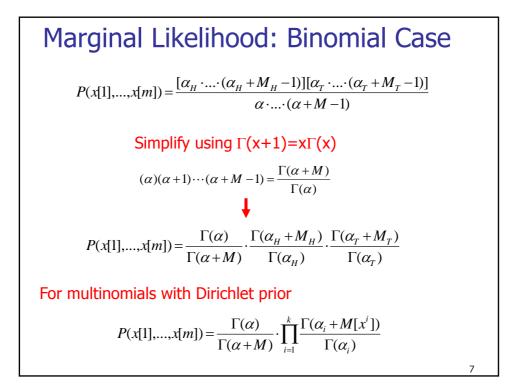


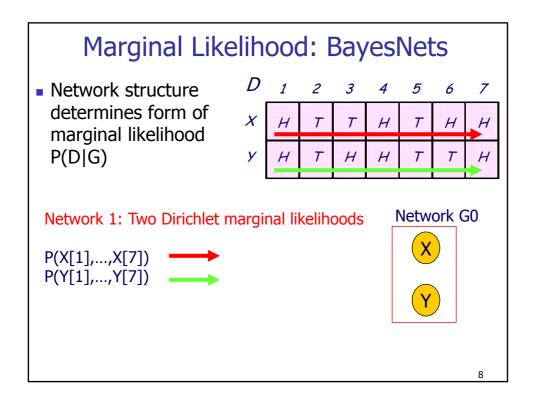


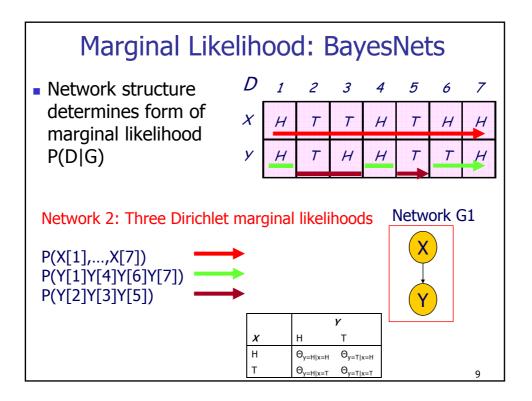


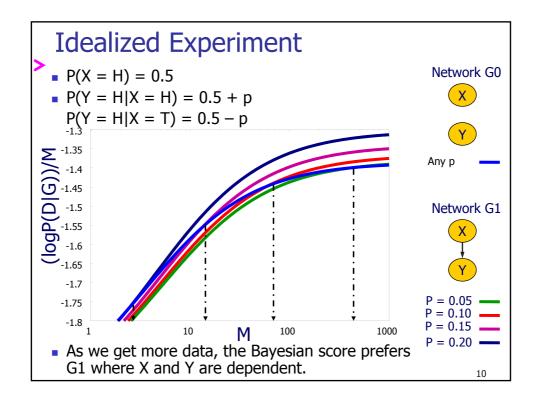


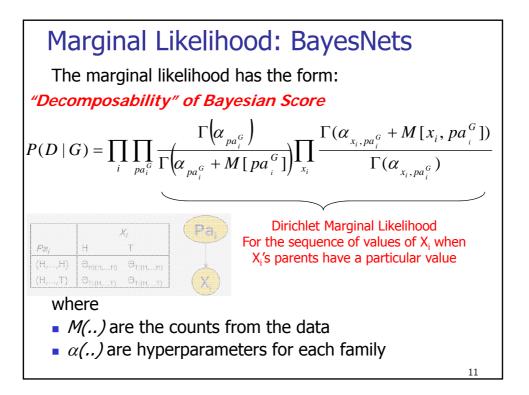


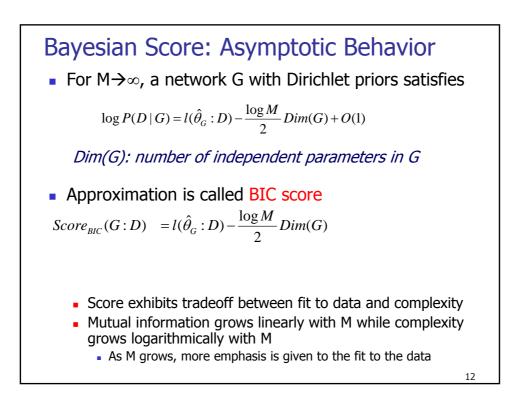


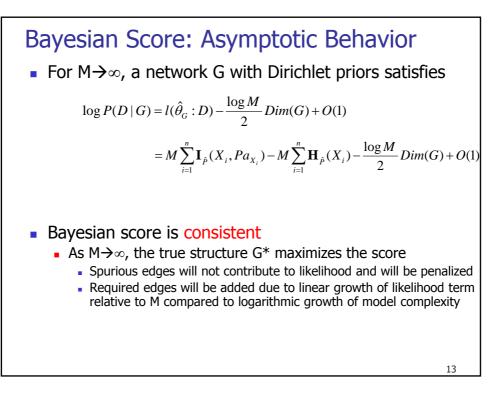


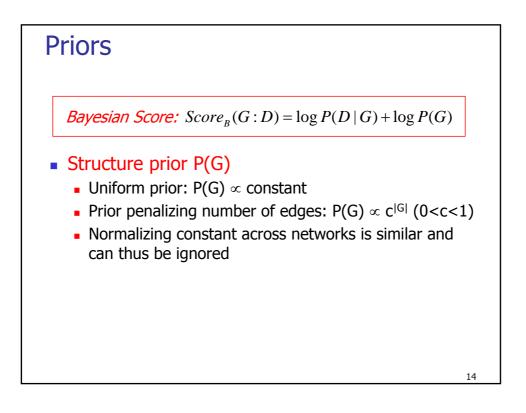


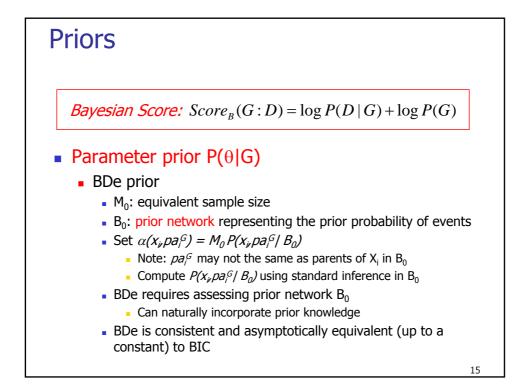


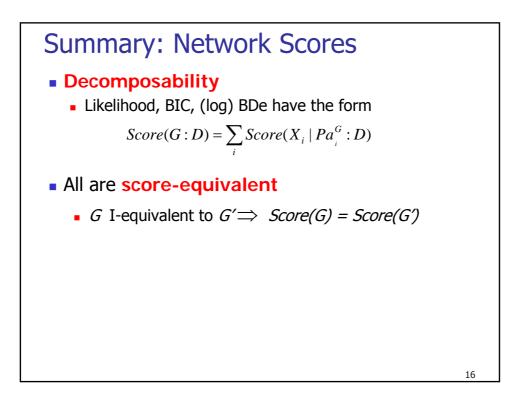










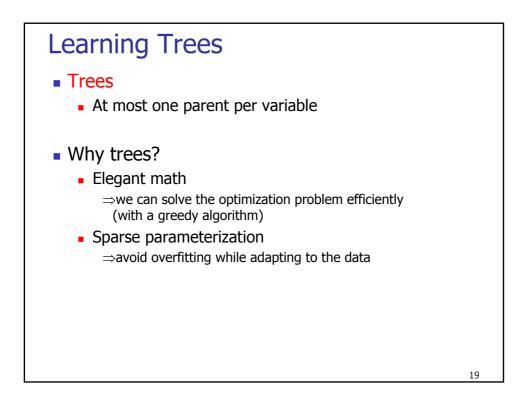


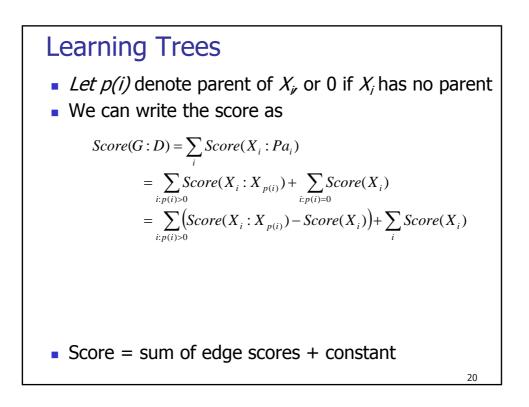
So far, we discussed scores for evaluating the quality of different candidate BN structures... Let's now examine how to find a structure with a high score.

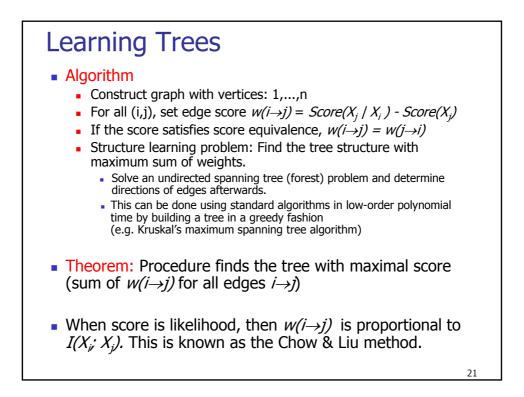
STRUCTURE SEARCH

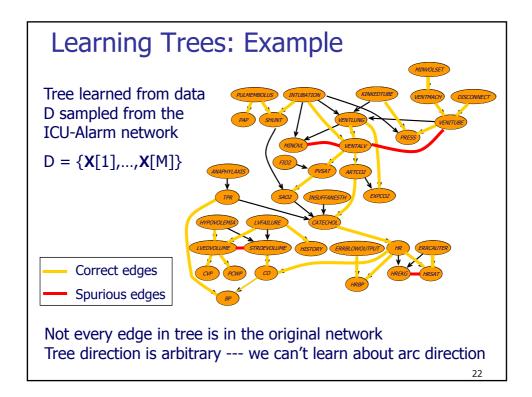
17

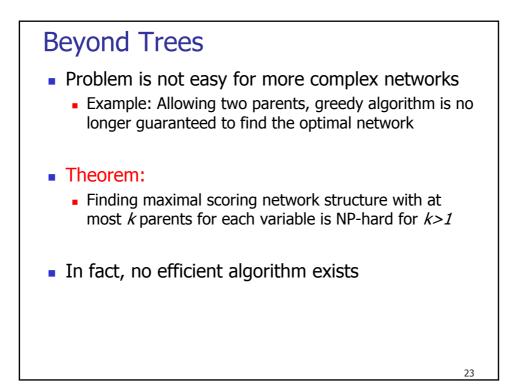
Optimization Problem Input: • Training data D = {X[1],...,X[M]} • Scoring function (including priors, if needed) • Set of possible structures (search space) • Including prior knowledge about structure **Output:** • A network (or networks) that maximize the score **Key Property:** • Decomposability: the score of a network is a sum of terms. $Score(G:D) = \sum_{i} Score(X_i | Pa_i^G:D)$











Fixed Ordering
For any decomposable scoring function Score(G:D) Score(G:D) = ∑Score(X_i | Pa^G_i:D) and ordering α the maximal scoring network has:
Pa^G_i = arg max_{U⊆{X_i:X_i<X_i}} Score(X_i | U_i:D) (since choice at X_i does not constrain other choices)
For fixed ordering, the structure learning problem becomes a set of independent problems of finding parents of X_i.
If we bound the in-degree per variable by d, then complexity is exponential in d

