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Lecture 11 – May 2, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Structure Learning

Readings: K&F 18.3, 18.4, 18.5, 18.6

Last Time
Score-based structure learning

Candidate structures; Score function; Search for the 
high-scoring structure

Scoring functions
Maximum likelihood score

ScoreL(G:D)=log P(D | G, θ’G) where θ’G is MLE for G
Prone to overfitting

Bayesian score
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Bayesian Score
Main principle of the Bayesian approach

Whenever we have uncertainty over anything, place a distribution over it. 
What uncertainty? (G, ΘG)
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Marginal likelihood Prior over structures
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Marginal probability of Data

P(D) does not depend on the network

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=

Marginal Likelihood of Data Given G

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=

Likelihood Prior over parameters
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Note similarity to maximum likelihood score, but with 
the key difference that ML finds maximum of 
likelihood and here we compute average of the terms 
over parameter space
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Marginal likelihood
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Marginal Likelihood: Binomial Case
Assume a sequence of m coin tosses
By the chain rule for probabilities
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Likelihood Prior over parameters

GGG dGPGDPGDP
G

θθθ
θ
∫= )|(),|()|(

X

Marginal Likelihood: Binomial Case
Assume a sequence of m coin tosses
By the chain rule for probabilities

Recall that for Dirichlet priors

Where Mm
H is number of heads in first m examples
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Marginal Likelihood: Binomial Case
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Simplify using Γ(x+1)=xΓ(x)
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For multinomials with Dirichlet prior
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X

Y

Network structure 
determines form of
marginal likelihood 
P(D|G)

1 2 3 4 5 6 7

Network 1: Two Dirichlet marginal likelihoods

P(X[1],…,X[7])
P(Y[1],…,Y[7])

Marginal Likelihood: BayesNets

X

Y

Network G0
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H T T H T H H
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Y

Network structure 
determines form of
marginal likelihood 
P(D|G)

1 2 3 4 5 6 7

Marginal Likelihood: BayesNets

Network 2: Three Dirichlet marginal likelihoods

P(X[1],…,X[7])
P(Y[1]Y[4]Y[6]Y[7])
P(Y[2]Y[3]Y[5])

X

Y

Network G1
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Y

X H T

H Θy=H|x=H Θy=T|x=H

T Θy=H|x=T Θy=T|x=T

D

P(X = H) = 0.5
P(Y = H|X = H) = 0.5 + p
P(Y = H|X = T) = 0.5 – p

As we get more data, the Bayesian score prefers 
G1 where X and Y are dependent.
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The marginal likelihood has the form:

where 
M(..) are the counts from the data
α(..) are hyperparameters for each family
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Dirichlet Marginal Likelihood
For the sequence of values of Xi when

Xi’s parents have a particular value

Marginal Likelihood: BayesNets
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Pai

Xi

Xi

Pai H T

(H,…,H) ΘH|(H,…,H) ΘT|(H,…,H)

(H,…,T) ΘT|(H,…,T) ΘT|(H,…,T)

“Decomposability” of Bayesian Score

Bayesian Score: Asymptotic Behavior
For M ∞, a network G with Dirichlet priors satisfies

Approximation is called BIC score

Score exhibits tradeoff between fit to data and complexity
Mutual information grows linearly with M while complexity 
grows logarithmically with M

As M grows, more emphasis is given to the fit to the data
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Dim(G): number of independent parameters in G
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Bayesian Score: Asymptotic Behavior
For M ∞, a network G with Dirichlet priors satisfies

Bayesian score is consistent
As M ∞, the true structure G* maximizes the score

Spurious edges will not contribute to likelihood and will be penalized
Required edges will be added due to linear growth of likelihood term 
relative to M compared to logarithmic growth of model complexity
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Priors

Structure prior P(G)
Uniform prior: P(G) ∝ constant
Prior penalizing number of edges: P(G) ∝ c|G| (0<c<1)
Normalizing constant across networks is similar and 
can thus be ignored

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=

14
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Priors

Parameter prior P(θ|G)
BDe prior

M0: equivalent sample size
B0: prior network representing the prior probability of events
Set α(xi,pai

G) = M0 P(xi,pai
G| B0) 

Note: pai
G may not the same as parents of Xi in B0

Compute P(xi,pai
G| B0) using standard inference in B0

BDe requires assessing prior network B0

Can naturally incorporate prior knowledge

BDe is consistent and asymptotically equivalent (up to a 
constant) to BIC

Bayesian Score: )(log)|(log):( GPGDPDGScoreB +=
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Summary: Network Scores
Decomposability

Likelihood, BIC, (log) BDe have the form

All are score-equivalent

G I-equivalent to G’ ⇒ Score(G) = Score(G’)
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STRUCTURE SEARCH

So far, we discussed scores for 
evaluating the quality of different 
candidate BN structures…  Let’s now 
examine how to find a structure with 
a high score.
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Optimization Problem
Input:

Training data D = {X[1],…,X[M]}
Scoring function (including priors, if needed)
Set of possible structures (search space)

Including prior knowledge about structure

Output:
A network (or networks) that maximize the score

Key Property:
Decomposability: the score of a network is a sum of terms.
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Trees
At most one parent per variable

Why trees?
Elegant math 

⇒we can solve the optimization problem efficiently
(with a greedy algorithm)

Sparse parameterization 
⇒avoid overfitting while adapting to the data

Learning Trees
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Let p(i) denote parent of Xi, or 0 if Xi has no parent
We can write the score as

Score = sum of edge scores + constant
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Score of “empty”
network

Improvement over 
“empty” network

Learning Trees
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Algorithm
Construct graph with vertices: 1,...,n
For all (i,j), set edge score w(i→j) = Score(Xj | Xi ) - Score(Xj)
If the score satisfies score equivalence, w(i→j) = w(j→i)
Structure learning problem: Find the tree structure with 
maximum sum of weights.

Solve an undirected spanning tree (forest) problem and determine 
directions of edges afterwards.
This can be done using standard algorithms in low-order polynomial 
time by building a tree in a greedy fashion
(e.g. Kruskal’s maximum spanning tree algorithm)

Theorem: Procedure finds the tree with maximal score 
(sum of w(i→j) for all edges i→j)

When score is likelihood, then w(i→j) is proportional to 
I(Xi; Xj). This is known as the Chow & Liu method.

Learning Trees
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Not every edge in tree is in the original network
Tree direction is arbitrary --- we can’t learn about arc direction
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Learning Trees: Example

Correct edges

Spurious edges

Tree learned from data 
D sampled from the 
ICU-Alarm network

D = {X[1],…,X[M]}
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Beyond Trees
Problem is not easy for more complex networks

Example: Allowing two parents, greedy algorithm is no 
longer guaranteed to find the optimal network

Theorem:
Finding maximal scoring network structure with at 
most k parents for each variable is NP-hard for k>1

In fact, no efficient algorithm exists
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Fixed Ordering
For any decomposable scoring function Score(G:D) 

and ordering α the maximal scoring network has:

For fixed ordering, the structure learning problem 
becomes a set of independent problems of finding 
parents of Xi.

If we bound the in-degree per variable by d, then 
complexity is exponential in d

):|(maxarg }:{ DXScorePa iXXX
G
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(since choice at Xi does not constrain other choices)
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We address the problem by using heuristic search

Define a search space:
nodes are possible structures
edges denote adjacency of structures

Traverse this space looking for high-scoring 
structures

Search techniques:
Greedy hill-climbing
Best first search
Simulated Annealing
...

Heuristic Search
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Decomposability:

Caching: To update the score after a local change, we 
only need to re-score the families that were changed

Exploiting Decomposability
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Simplest heuristic local search
Start with a given network

empty network
best tree (tree learning) 
a random network

At each iteration
Evaluate all possible changes
Apply change that leads to best improvement in score
Reiterate

Stop when no modification improves score

Each step requires evaluating O(n2) new changes

Greedy Hill Climbing
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Greedy Hill-Climbing can get stuck in:
Local Maxima

All one-edge changes reduce the score

Plateaus
Some one-edge changes leave the score unchanged
Happens because I-equivalent networks received the same 
score and are neighbors in the search space

Both occur during structure search
Standard heuristics can escape from both

Randomization and restart
TABU search: Keep a list of recent operators we applied, and in 
each step, we do not consider operators that reverse the effect of 
recently applied operators.

Greedy Hill Climbing Pitfalls
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Model Selection
So far, we focused on single model

Given D={X[1],…,X[M]}, find best scoring model

Use it to predict next example
Implicit assumption

Making predictions based on the Bayesian estimation rule:

Best scoring model dominates the weighted sum
Valid with many data instances (very large M)

Pros:
We get a single structure
Allows for efficient use in our tasks

Cons:
We are committing to the independencies of a particular 
structure
Other structures might be as probable given the data 30
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Announcements
Solution for PS #1 uploaded.

Typo in Q5 of PS #2
Let Ci be some clique such that Scope[φ’]…
1 free late day for PS #2 (due 5/3 at noon; CSE536)

PS #3 is ready (please pick it up).
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