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Lecture 16 – May 18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Approximate 
Inference II

Readings: K&F 11.1, 11.2, 11.3, 11.4

Review: Metropolis-Hastings Algorithm
Metropolis-Hastings algorithms

You decide the transition probability TQ – based on the 
proposal distribution Q
Acceptance probability “corrects” for the discrepancy between 
Q and P

Advantage: more “global” move from one state to another 
(compared to Gibbs sampling)

The convergence of the M-H algorithm depends 
crucially on the proposal distribution Q

We need a proposal strategy that leads to a rapidly mixing 
Markov chains (i.e. one that converges quickly to the 
stationary distribution)
Let’s see a toy example from Dellaert et al.* 
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* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 
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Revisit: Toy Model for Data Association 
Blue dots: variables, Xi (i=1,2,3,4)
Red dots: observations (values that we assign to variables)

Two modes

We want to estimate EP(f) – Let’s use M-H algorithm with 
three proposal distributions

distance
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Proposal distributions for M-H
Proposal distribution 1 (flip proposal)

Simplest way of taking larger steps in moving over the 
state spaces (compared to Gibbs sampling)
Randomly pick two variables, flip their assignments

Attractive from a computational point of view, it has 
the severe disadvantage of leading to slowly mixing 
chains in many instances…

What is the acceptance probability?
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* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 
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Proposal distributions for M-H
Proposal distribution 2 (augmenting path)

Suggest a move that is more likely to be accepted: 
recursively resolving the conflict

Improving the convergence properties of the chain:

1. randomly pick one variable 
2. sample it pretending that all observations are 
available
3. pick the variable X whose assignment was taken 
(conflict), goto step 2
4. loop until step 2 creates no conflict

What is the acceptance probability?
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* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 

Proposal distributions for M-H
Proposal distribution 3 (“smart” augmenting path)

More aggressive way of moving to different states
Same as the previous one except for the highlighted 

1. randomly pick one variable 
2. sample it pretending that all observations are 
available (excluding the current one)
3. pick the variable whose assignment was taken 
(conflict), goto step 2
4. loop until step 2 creates no conflict

What is the acceptance probability?
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* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with 
Unknown Correspondence.  Machine Learning 2003. 
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Let’s “See” How They Work
Which proposal strategy is the most “aggressive” in 
moving over the states??

Converges the fastest to the stationary distribution

Run the following Matlab scripts:
VisualMCMC2(10000, 0.7, 0.05);

% live animation of sampling
% parameters: num of samples, sigma, pause time after each 

sample 
Plot2;

% the first few lines of Plot2.m contain the parameters you may 
want to play around with

How to evaluate the convergence performance?
Compare between multiple Markov chains, in terms of 
Ep(f), P(Y=y), etc

7

Plots generated by “Plot2” 
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Does this look like the chains 
reached the stationary distribution?

Comparing the estimates 
P(Xi) between 2 chains

The convergence of the M-H algorithm depends 
crucially on the proposal distribution Q

We need a proposal strategy that leads to a rapidly mixing 
Markov chains
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Review: Particle-based Inference
General framework: 

Estimate EP(f) from particles x[1],…,x[M] from P 
(target distribution) or Q (proposal distribution)

Full particle methods
Sampling methods

Forward sampling, Likelihood weighting
(Un-normalized/normalized) Importance sampling
Markov chain Monte Carlo

Gibbs sampling
Metropolis-Hastings algorithm

Deterministic particle generation
Upper/lower bounds of EP(f)

Distributional (Collapsed) particles
CSE 515 – Statistical Methods – Spring 2011 9

GLOBAL APPROXIMATE 
INFERENCE

Let’s now talk about a different kind 
of approximate inference algorithm 
that views inference as 
optimization…

CSE 515 – Statistical Methods – Spring 2011 10
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General Approximate Inference
Again, in many real-life applications using large and 
dense networks, exact inference is infeasible…

Strategy
Define a class of simpler distributions Q
Search for a particular instance in Q that is “close” to P

All methods we will discuss optimize the same target function for 
measuring the similarity between Q and P

Answer queries using inference in Q rather than P

Before considering approximate inference methods, 
let’s revisit exact inference based on message 
passing algorithms
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Cluster Graph
A cluster graph K for factors F is an undirected 
graph

Nodes are associated with a subset of variables Ci⊆U
The graph is family preserving: each factor φ∈F is 
associated with one node Ci such that Scope[φ]⊆Ci

Each edge Ci–Cj is associated with a sepset Si,j = Ci ∩ Cj

Clique tree: a cluster graph over factors F that 
forms a tree and satisfies the running intersection 
property

12
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Clique Tree Inference

13

C

D I

SG

L
JH

Verify:

Tree and family preserving

Running intersection property

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)

1 2 3 45

Message Passing: Belief Propagation
Initialize the clique tree

For each clique Ci set 
For each edge Ci—Cj set 

While unset cliques exist (clique tree is calibrated)
Select Ci—Cj

Send message from Ci to Cj
Marginalize the clique over the sepset

Update the belief at Cj

Update the sepset at Ci–Cj
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Clique Tree Invariant
Belief propagation can be viewed as 
reparameterizing the joint distribution

Upon calibration we showed

Initially this invariant holds since 

At each update step invariant is also maintained
Message only changes πi and µi,j so most terms remain 
unchanged
We need to show

But this is exactly the message passing step

Belief propagation re-parameterizes P at each step
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation (GBP)

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees
GBP as optimization

Propagation with approximate messages (EP)
Factorized messages
Approximate message propagation

Structured variational approximations

16
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The Energy Functional
Suppose we want to approximate P with Q

Represent P by factors F

Distance metric? – Many ways, but let’s use relative 
entropy (aka KL-divergence)

Define the energy functional

Then, we can show that 
Proof in K&F (page 385)
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Minimizing D(Q||PF) is equivalent to maximizing F[PF’,Q]

lnZ ≥ F[PF’,Q] (since D(Q||PF)≥0)
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Unwieldy for direct optimization: 
an explicit summation over all 
possible assignments of U

Inference as Optimization
Basic idea: We can show that inference can be 
viewed as maximizing the energy functional 
F[PF’,Q]

Define a distribution Q over clique potentials
Transform F[PF’,Q] to an equivalent factored form 
F’[PF’,Q]
Show that if Q maximizes F’[PF’,Q] subject to constraints 
in which Q represents calibrated potentials, then there 
exists factors (messages) that satisfy the inference 
message passing equations

Equivalent to belief propagation!

18
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Defining Q
Recall that throughout BP

Define Q as re-parameterization of P such that

If T is calibrated, D(Q||PF)=0 and so F[PF’,Q] is 
maximized.
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Factored Energy Functional
Recall that the energy functional is defined as

Define the factored energy functional as

Theorem: if Q is a set of calibrated potentials for 
T, then F[PF’,Q] = F’[PF’,Q] (K&F page 387)
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Inference as Optimization
Optimization task

Find Q that maximizes F’[PF’,Q] subject to

The solution of the above optimization problem 
satisfies (if exists)

Suggests iterative procedure
Identical to belief propagation!
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General optimization tool based 
on Lagrange multipliers

Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees
GBP as optimization

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations

22



12

Revisit: Clique Tree Inference

23

C

D I

SG

L

JH

Verify:

Tree and family preserving

Running intersection property

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)

1 2 3 45

Modify

Generalized Belief Propagation

Perform belief propagation in a cluster graph with loops

Strategy:

C

A

B D

Simple 
network

A,B,D

B,C,D

B,D

Clique 
tree

A,B

B,C

B

Cluster 
graph

A,D

C,D

D

C

A

24
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Generalized Belief Propagation

Perform belief propagation in a cluster graph with loops

Strategy:

A,B

B,C

B

Cluster 
graph

A,D

C,D

D

C

A
Inference may be incorrect: double 
counting evidence

25

1

2 3

4

Generalized Belief Propagation

Perform belief propagation in a cluster graph with loops

Strategy:

A,B

B,C

B

Cluster 
graph

A,D

C,D

D

C

AInference may be incorrect: double 
counting evidence

Unlike in BP on trees:
Convergence is not guaranteed
Potentials in calibrated tree are not 
guaranteed to be marginals in P 

26
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2 3

4
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Generalized Cluster Graph
A cluster graph K for factors F is an undirected graph

Nodes are associated with a subset of variables Ci⊆U
The graph is family preserving: each factor φ∈F is 
associated with one node Ci such that Scope[φ]⊆Ci

Each edge Ci–Cj is associated with a sepset Si,j = Ci ∩ Cj

A generalized cluster graph K for factors F is an 
undirected graph

Nodes are associated with a subset of variables Ci⊆U
The graph is family preserving: each factor φ∈F is 
associated with one node Ci such that Scope[φ]⊆Ci

Each edge Ci–Cj is associated with a subset Si,j ⊆ Ci ∩ Cj

27

Generalized Cluster Graph
A generalized cluster graph obeys the running 
intersection property if for each X∈Ci and X∈Cj, 
there is exactly one path between Ci and Cj for 
which X∈S for each subset S along the path

All edges associated with X form a tree that 
spans all the clusters that contain X

Note: some of these clusters may be
connected with more than one path A,B

B,C

B

A,D

C,D

D

C

A

28
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Calibrated Cluster Graph
A generalized cluster graph is calibrated if for 
each edge Ci – Cj we have:

Weaker than in clique trees, since Si,j is a subset of the 
intersection between Ci and Cj

If a cluster graph satisfies the running intersection 
property, then the marginal on any variable X is the 
same in every cluster that contains X
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GBP is Efficient
X11 X12 X13

X21 X22 X23

X31 X32 X33

X11,X12

X12
X12,X13

X12,X22 X13,X23X11,X21

X21,X22 X22,X23

X22,X32 X23,X33X21,X31

X31,X32 X32,X33

X11

X21

X21

X31

X32

X32 X33

X23X22

X22

X22 X23

X13X12

Cluster graph

Markov grid network

Note: clique tree in a n x n 
grid is exponential in n

Round of GBP is O(n)
30
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees
GBP as optimization

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations

31

Constructing Cluster Graphs
When constructing clique trees, all constructions 
give the same result, but differ in computational 
complexity

In GBP, different cluster graphs can vary in both
computational complexity and approximation 
quality (accuracy)

32
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Transforming Pairwise MNs
A pairwise Markov network over a graph H has:

A set of node potentials {π[Xi]:i=1,...n}
A set of edge potentials {π[Xi,Xj]: Xi,Xj∈H}
Example:

X11 X12 X13

X21 X22 X23

X31 X32 X33

X11,X21

X11 X12 X13

X23

X33X32X31

X21 X22

X12,X22 X13,X23

X21,X31 X22,X32 X23,X33

X21,X22

X11,X12

X31,X32

X22,X23

X12,X13

X32,X33

33

Transforming Bayesian Networks
Example:

“Large” cluster per each CPD
Single nodes for each variable
Connect node and large cluster if node in CPD

Graph obeys running intersection property

A,B,C

A D FC B

A,B,D B,D,F
A B

DC

F Bethe approximation

34
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations
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Generalized Belief Propagation
GBP maintains distribution invariance

(since message passing maintains invariance)
∏
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Generalized Belief Propagation
If GBP converges (K is calibrated)

Each subtree T is calibrated with edge potentials 
corresponding to marginals of PT(U)

(since PT(U) is a calibrated tree)
∏
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Generalized Belief Propagation
Calibrated graph potentials are not PF(U) marginals

A,B

B,C

B

A,D

C,D

D

C

A
1

2 3

4
A,B

B,C

B

C,D
C

1

2 3
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Inference as Optimization
Optimization task

Find Q that maximizes F’[PF’,Q] subject to

The solution of the above optimization problem 
satisfies

Suggests iterative procedure
Identical to belief propagation!
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General optimization tool based 
on Lagrange multipliers

GBP as Optimization
Optimization task

Find Q that maximizes F’[PF’,Q] subject to

The solution of the above optimization problem 
satisfies

Note: Si,j is only a subset of intersection between Ci and Cj

Iterative optimization procedure is GBP
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GBP as Optimization
Clique trees

F[PF,Q]=F’[PF,Q]
Iterative procedure (BP) guaranteed to converge
Convergence point represents marginal distributions of 
PF

Cluster graphs
F[PF,Q]=F’[PF,Q] does not hold!
Iterative procedure (GBP) not guaranteed to converge
Convergence point does not represent marginal 
distributions of PF

41

GBP in Practice
Dealing with non-convergence

Often small portions of the network do not converge
stop inference and use current beliefs

Use intelligent message passing scheduling
Tree reparameterization (TRP) selects entire trees, and 
calibrates them while keeping all other beliefs fixed
Focus attention on uncalibrated regions of the graph

42
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Global Approximate Inference
Inference as optimization
Generalized Belief Propagation

Define algorithm
Constructing cluster graphs
Analyze approximation guarantees

Propagation with approximate messages
Factorized messages
Approximate message propagation

Structured variational approximations
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Propagation w. Approximate Msgs
General idea

Perform BP (or GBP) as before, but propagate 
messages that are only approximate
Modular approach

General inference scheme remains the same
Can plug in many different approximate message 
computations

44



23

Factorized Messages

X11 X12 X13

X21 X22 X23

X31 X32 X33

X21

X11 X12

X21

X31 X32

X22

X31

X11 X13

X22

X33

X23

X32

X12

1 2 3

Markov network Clique tree

Keep internal structure of the clique tree cliques
Calibration involves sending messages that are 
joint over three variables
Idea: simplify messages using factored 
representation

Example: ][~][~][~],,[~
31212121112131211121 XXXXXX →→→→ = δδδδ
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