Readings: K&F 12

Learning Problems in Real Applications & Approximate Inference

Lecture 14 – May 11, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Outline

- Learning problems in real applications: Robotics, AI, Natural Language Processing, Computational Biology, Computer Vision...
 - Robotic mapping
 - Part-of-speech tagging
 - Peptide identification in MSMS
 - Finding tumor-specific mutations
 - Collaborative filtering
 - Discovering user clusters
 - Computer vision
 - Learning spatial context: using stuff to find things
 - Machine learning
 - Structured prediction
- Particle-based approximate inference

PARTICLE-BASED APPROXIMATE INFERENCE

CSE 515 – Statistical Methods – Spring 2011

35

Inference Complexity Summary

- NP-Hard
 - Exact inference
 - Approximate inference
 - with relative error
 - with absolute error < 0.5 (given evidence)
- Hopeless?
 - No, we will see many network structures that have provably efficient algorithms and we will see cases when approximate inference works efficiently with high accuracy

Approximate Inference

- Particle-based methods
 - Create instances (particles) that represent part of the probability mass
 - Random sampling
 - Deterministically search for high probability assignments

Global methods

- Approximate the distribution in its entirety
 - Use exact inference on a simpler (but close) network (e.g. meanfield)
 - Perform inference in the original network but approximate some steps of the process (e.g., ignore certain computations or approximate some intermediate results)

37

Particle-Based Methods

- Particle definition
 - Full particles complete assignments to all variables
 - Distributional particles assignment to part of the variables
- Particle generation process
 - Generate particles deterministically
 - Generate particles by sampling

General framework

- Generate samples (particles) x[1],...,x[M] from P
- Estimate function by $E_P(f) \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$

Particle-Based Methods Overview

- Full particle methods
 - Sampling methods
 - Forward sampling
 - Importance sampling
 - Markov chain Monte Carlo
 - Deterministic particle generation
- Distributional particles

30

Forward Sampling

- Generate random samples from P(X)
 - Use the Bayesian network to generate samples
- Estimate function by $E_P(f) \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$

Forward Sampling

- Let X₁, ..., X_n be a topological order of the variables
- For i = 1,...,n
 - Sample x_i from P(X_i | pa_i)
 - (Note: since $Pa_i \subseteq \{X_1, ..., X_{i-1}\}$, we already assigned values to them)
- return *x*₁, ..., *x*_n
- Estimate function by: $E_P(f) \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$
- Estimate P(y) by: $P(y) \approx \frac{1}{M} \sum_{m=1}^{M} \mathbf{1}\{x[m](y) = y\}$

47

Forward Sampling

- Sampling cost
 - Per variable cost: O(log(Val|X_i|))
 - Sample uniformly in [0,1]
 - Find appropriate value of all Val|X_i| values that X_i can take
 - Per sample cost: O(nlog(d)) (d = max_i Val|X_i|)
 - Total cost: O(Mnlog(d))
- Number of samples needed
 - To get a relative error < ϵ , with probability 1- δ , we need

$$M \ge 3 \frac{\ln(2/\delta)}{P(\mathbf{v})\varepsilon^2}$$

- Note that number of samples grows inversely with P(y)
- For small P(y) we need many samples, otherwise we report P(y)=0

Rejection Sampling

- In general we need to compute P(Y|e)
- We can do so with *rejection sampling*
 - Generate samples as in forward sampling
 - Reject samples in which E≠e
 - Estimate function from accepted samples
- Problem: if evidence is unlikely (e.g., P(e)=0.001)) then we generate many rejected samples

49

Particle-Based Methods Overview

- Full particle methods
 - Sampling methods
 - Forward sampling
 - Importance sampling
 - Markov chain Monte Carlo
 - Deterministic particle generation
- Distributional particles

Likelihood Weighting

- Can we ensure that all of our samples satisfy E=e?
 - Solution: when sampling a variable X∈E, set X=e
 - Problem: we are trying to sample from the posterior P(X|e) but our sampling process still samples from P(X)
 - Solution: weigh each sample by the joint probability of setting each variable to its evidence/observed value
 - In effect, we are sampling from P(X,e) which we can normalize to then obtain P(X|e) for a query of interest

Likelihood Weighting

- Let $X_1, ..., X_n$ be a topological order of the variables
- For i = 1,...,n
 - If X_i∉E
 - Sample x_i from P(X_i | pa_i)
 - If $X_i \in E$
 - Set $X_i = E[x_i]$
 - Set $w_i = w_i \cdot P(E[x_i] \mid pa_i)$
- return w_i and x₁, ...,x_n
- Estimate P(y|E) by: $P(y|e) \approx \frac{\sum_{m=1}^{M} w[m] \mathbf{1} \{x[m](y) = y\}}{\sum_{m=1}^{M} w[m]}$

Importance Sampling

- Generalization of likelihood weighting sampling
- Idea: to estimate a function relative to P, rather than sampling from the distribution P, sample from another distribution Q
 - P is called the target distribution
 - Q is called the proposal or the sampling distribution
 - Requirement from Q: $P(x) > 0 \rightarrow Q(x) > 0$
 - Q does not 'ignore' any non-zero probability events in P
 - In practice, performance depends on similarity between Q and P

59

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

CSE 515 – Statistical Methods – Spring 2011