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Outline

= Learning problems in real applications: Robotics, Al,
Natural Language Processing, Computational Biology,
Computer Vision...
= Robotic mapping
» Part-of-speech tagging
= Peptide identification in MSMS
= Finding tumor-specific mutations
= Collaborative filtering <:|

= Discovering user clusters

= Computer vision
= Learning spatial context: using stuff to find things

= Machine learning
= Structured prediction

= Particle-based approximate inference ¢~ 2




PARTICLE-BASED
APPROXIMATE INFERENCE
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Inference Complexity Summary

= NP-Hard
= Exact inference

= Approximate inference
= with relative error
= with absolute error < 0.5 (given evidence)

= Hopeless?

= No, we will see many network structures that have
provably efficient algorithms and we will see cases
when approximate inference works efficiently with high
accuracy
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Approximate Inference

» Particle-based methods

= Create instances (particles) that represent part of the
probability mass
= Random sampling
= Deterministically search for high probability assignments

s Global methods

= Approximate the distribution in its entirety

= Use exact inference on a simpler (but close) network (e.g.
meanfield)

= Perform inference in the original network but approximate
some steps of the process (e.g., ignore certain computations
or approximate some intermediate results)
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Particle-Based Methods

» Particle definition
= Full particles — complete assignments to all variables

= Distributional particles — assignment to part of the
variables

m Particle generation process
= Generate particles deterministically
= Generate particles by sampling

General framework

= Generate samples (particles) x[1],...,x[M] from P

1
= Estimate function by E(f) zMZ:‘_ll‘(X[r“])
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Particle-Based Methods Overview

= Full particle methods

= Sampling methods
mm) . Forward sampling
= Importance sampling
= Markov chain Monte Carlo

= Deterministic particle generation

= Distributional particles
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Forward Sampling

= Generate random samples from P(X)
= Use the Bayesian network to generate samples

= Estimate function by Ep(f)zﬁzx_lf(x[m])
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Forward Sampling
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Forward Sampling
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Forward Sampling
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Forward Sampling
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Forward Sampling
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Forward Sampling

= Let Xy, ...,X, be a topological order of the variables
= Fori=1,...,n
= Sample x;from P(X; | pa; )

= (Note: since Pa,; c {X,,...,X..}, we already assigned values to
them)

return x,, ...,X,

1

Estimate function by: Ep(f)zﬁz,h:_lf(x[m])

Estimate P(y) by: P(y) zﬁzn“f_ll{x[m](y) —y}

47

Forward Sampling

= Sampling cost

= Per variable cost: O(log(Val|X;|))

= Sample uniformly in [0,1]

= Find appropriate value of all Val|X;| values that X; can take
= Per sample cost: O(nlog(d)) (d = max; Val|Xi])

= Total cost: O(Mnlog(d))

» Number of samples needed
= To get a relative error < g, with probability 1-56, we need
M >3 In(2/52)
P(y)e
= Note that number of samples grows inversely with P(y)

= For small P(y) we need many samples, otherwise we report
P(y)=0
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Rejection Sampling

= In general we need to compute P(Y|e)

= We can do so with rejection sampling
= Generate samples as in forward sampling
= Reject samples in which Exe
= Estimate function from accepted samples

= Problem: if evidence is unlikely (e.g.,
P(e)=0.001)) then we generate many rejected
samples
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Particle-Based Methods Overview

= Full particle methods

= Sampling methods
= Forward sampling
‘ = Importance sampling
= Markov chain Monte Carlo

= Deterministic particle generation

= Distributional particles

50




Likelihood Weighting

= Can we ensure that all of our samples satisfy E=e?

= Solution: when sampling a variable XeE, set X=e

= Problem: we are trying to sample from the posterior P(X|e) but
our sampling process still samples from P(X)

= Solution: weigh each sample by the joint probability of setting
each variable to its evidence/observed value

= In effect, we are sampling from P(X,e) which we can normalize
to then obtain P(X|e) for a query of interest
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Likelihood Weighting
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Likelihood Weighting
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Likelihood Weighting
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Likelihood Weighting
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Likelihood Weighting

E = {S=st, G=g?}
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Likelihood Weighting
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Likelihood Weighting

Let X;, ...,X,, be a topological order of the variables
Fori=1,...,n
» If Xi2E
= Sample x;from P(X; | pa; )
= If X, €E
- Set X=E[x]
« Setw,=w; - P(E[x] | pa;)

return w; and Xy, ...,X,

> wiml{x[ml(y) = v}
> wim]

Estimate P(y|E) by: P(y|e) ~
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Importance Sampling

m Generalization of likelihood weighting sampling

= |dea: to estimate a function relative to P, rather
than sampling from the distribution P, sample from
another distribution Q
= P is called the target distribution
= Q is called the proposal or the sampling distribution
= Requirement from Q: P(x) >0 2> Q(x) >0
= Q does not ‘ignore’ any non-zero probability events in P
= In practice, performance depends on similarity between Q and P
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