

Mean Field Maximization: Intuition • We can rewrite $Q(x_i) = \frac{1}{Z_i} \exp\left\{\sum_{\phi \in F} E_Q[\ln \phi | x_i]\right\}$ as: $Q(x_i) = \frac{1}{Z_i} \exp\left\{E_Q[\ln P_F(x_i | \mathbf{X}_{-i})]\right\} \exp\left\{E_Q[\ln ZP_F(\mathbf{X}_{-i})]\right\}$ $Q(x_i) = \frac{1}{Z_i} \exp\left\{E_Q[\ln P_F(x_i | \mathbf{X}_{-i})]\right\}$ • Doesn't depend on x_i . This constant can be "absorbed" into the normalizing function. • Q(x_i) is the geometric average of $P_F(x_i | \mathbf{X}_{-i})$ • Relative to the probability distribution Q • In this sense, marginal is "consistent" with other marginals • In P_F we can also represent marginals $P_F(x_i) = \sum_{x_i} P_F(x_{-i}) P_F(x_i | \mathbf{x}_{-i}) = E_{P_F}[P_F(x_i | \mathbf{x}_{-i})]$ • Arithmetic average with respect to P_F

LEARNING UNDIRECTED GRAPHICAL MODELS

CSE 515 – Statistical Methods – Spring 2011

CSE 515 – Statistical Methods – Spring 2011