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Qutline

= Approximate Inference
= Inference as optimization
= Generalized Belief Propagation

|:> = Propagation with approximate messages <«
« Factorized messages
= Approximate message propagation

= Structured variational approximations

= Learning Undirected Models




Propagation w. Approximate Msgs

» General idea

= Perform BP (or GBP) as before, but propagate messages
that are only approximate

= Modular approach
= General inference scheme remains the same
= Can plug in many different approximate message computations

Factorized Messages

= Keep internal structure of the cliques in the tree

= Calibration involves sending messages that are
joint over three variables

» Idea: simplify messages using factored
representatpn _ _ _
= Example: 0ol Xags Xops X1 1= 01,0 X116, ,,[X 51161 ,,[X 5]
X‘n] [Xn]_[xn] [XIZHXH]
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Computational Savings 1/2

= Answering queries in Cluster 2

= Exact inference: z,=72-6_,,5,,,
= Exponential in joint space of cluster 2 (6 variables)
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Computational Savings 2/2

= Answering queries in Cluster 2
= Exact inference: z,=7)-6,,,-5,,,
= Exponential in joint space of cluster 2 (6 variables)

» Approximate inference with factored messages
= Notice that subnetwork with factored messages is a tree
= Perform efficient exact inference on subtree to answer queries
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Factor Sets

= A factor set ¢={¢;,...,d} provides a compact
representation for high-dimensional factor ¢,x,...,xd,
= Belief propagation
= Multiplication of factor sets
« Easy: simply the union of the factors in each factor set multiplied
= Marginalization of factor set: inference in simplified network

=« Example: compute 8,5 SM:p(zx o x 78-5,.,)
( |~ N[ o
[ | ] [ X11 ]_[ X|12 ] [ X12 ] = ~‘2~>3[X12]52~>3[X22]52~>3[X32]
(X ) e 0 ) e M-projection
| | P(Xy, X5, X3) = P(X;)P(X,)P(X,)
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Global Approximate Inference

= Inference as optimization

= Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
= Analyze approximation guarantees

= Propagation with approximate messages
= Factorized messages

|:> = Approximate message propagation
= Structured variational approximations




Approximate Message Propagation

= Input
= Clique tree (or cluster graph)
= Assignments of original factors n° to clusters/cliques

= The factorized form of each sepset

= Can be represented by a network for each edge C—C; that
specifies the factorization (in previous examples we assumed
empty network)

= Two strategies for approximate message
propagation
= Sum-product message passing scheme
= Belief update messages

Sum-Product Propagation

= Same propagation scheme as in exact inference

= Select a root

= Propagate messages towards the root

« Each cluster collects messages from its neighbors and sends
outgoing messages when possible

= Propagate messages from the root

= Each message passing performs inference on
cluster

= Terminates in a fixed number of iterations

= Note: final marginals at each variable are not exact
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Message Passing: Belief Propagation

= Same as BP but with approximate messages
= Initialize the clique tree

= For each clique C;set 7 «<[],,.,.¢

= For each edge C—C;set 1«1
= While unset cliques exist

« Select C—C, Approximation
= Send message from C; to /
= Marginalize the clique over the sepset &, < p(Zcifsi_,. ;?i)
= Update the belief at C; 7; < 7, G[lﬁj
i

- Update the sepset at C—C; /4 < 0,

Two message passing schemes differ in approximate inference
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Global Approximate Inference

= Inference as optimization
= Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
= Analyze approximation guarantees
= Propagation with approximate messages
= Factorized messages
= Approximate message propagation

:>- Structured variational approximations
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Structured Variational Approx.

= Select a simple family of distributions Q
» Find QeQ that maximizes F[Pg,Q]
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Mean Field Approximation
= Q(x) = IQ(X)

= Q loses much of the information of P

= Approximation is computationally attractive
= Every query in Q is simple to compute
= Q is easy to represent

Xy
G
§ 0 ©
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P- — Markov grid network Q — Mean field network
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Mean Field Approximation

= The energy functional is easy to compute, even for
networks where inference is complex

= The energy functional for a fully factored distribution Q
can be rewritten simply as a sum of expectations, each
one over a small set of variables.

F[PF’Q] = ZEQ[In¢]+ HQ(U)

peF
Eolin 1= Q(u,)Ing(u,) = X ([T, ., Q(x)Ing(u,)

HQ(U)ZZHQ(Xi)

= The complexity of this expression depends on the size of
the factors in P, and not on the topology of the network.
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Mean Field Maximization

= Maximizing the Energy Functional of Mean-Field
« Find Q(x) = IIQ(X;) that maximizes F[P,Q]
= Subject to for all i: inQ(Xi)=1

®® ®
®© ©
§© ©

P- — Markov grid network Q — Mean field network
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Mean Field Maximization

= Theorem: Q(X;) is a local maximum of the mean field
given Q(Xy),-.-Q(Xi.1),Q(Xi41),-.-Q(X,) if and only if

Q(x) :%exp{z EqlIng| xi]}

i geF

= Proof in K&F on pages 451-452
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P- — Markov grid network Q — Mean field network
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Mean Field Maximization: Intuition
= We can rewrite Q(xi):ziexp{z EQ[In¢|xi]} as:

i geF

Q) = -exp {E, [ Py (x, 1 X1 foxp {Eq In 2P, (X1}

Doesn’t depend on x;.
This constant can be “absorbed”

Q(Xi) = %EXD{EQ[M PF (Xi | X_i)]} into the normalizing function.

= Q(Xx,) is the geometric average of P-(x;|X.;)
= Relative to the probability distribution Q
» In this sense, marginal is “consistent” with other marginals

= In P we can also represent marginals
Pe (X)) = z Pe ()P (% | x) = = [P: (% 1x_)]

. Arithmeticiaverage with respect to P
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Mean Field: Algorithm

= Since terms that do not involve x; can be
“absorbed” into the normalization constant,

= Simplify: Q(x,) = Ziexp{z Eoling| Xi]}

geF

. 1
= [0O: Q(xi)=z—exp{ ZEQ[In¢(U¢,xi)]}
i ¢:X;eScope(gp)
= Note: Q(x;) does not appear on right hand side
= Can solve and reach optimal Q(x;) in one step
= Note: step is only optimal given all other Q(X;) (j#i)

= Suggests an iterative algorithm: in each step, find the optimal
Q(x), given all the other Q(X;) (j#i)

« Convergence guaranteed to local maxima since each step
improves F[Pg,Q]
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Structured Approximations

= Can use Q that are increasingly complex

= As long as Q is easy (=inference feasible)
efficient update equations can be derived

Maximize F[P,Q]

58
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P- — Markov grid network Q — Mean field network
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LEARNING UNDIRECTED
GRAPHICAL MODELS

CSE 515 — Statistical Methods — Spring 2011
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Learning Undirected Graphs

:>- The likelihood function

= Log-linear representation

= Properties of the likelihood function
Learning parameters (weights)

= Maximum likelihood estimation

= Generatively vs Discriminatively
Learning with alternative goals
Learning with incomplete data

Learning structure (features)
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The Likelihood Function 1/2

= Consider the very simple network,
parameterized by two potentials ¢,(A,B)  #.(AB) Q
and ¢, (B,C)

B,C
= The log-likelihood of an instance <a,b,c> : % )

InP(a,b,c)=Ing(a,b)+Ing,(b,c)-InZ

= Where Z is the partition function that ensures
the distribution sums up to 1.

= Now, consider the log-likelihood function for a
data set D containing M instances:

10:D) = >"[Ing, (a[m], b[m]) + In g, (b[m], c[m]) - In Z ()]
=Y M[a,b]Ing,(a,b)D> MIb,c]Ing,(b,c)—M InZ(0)
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The Likelihood Function 2/2
1(0:D) =Y M[a,b]ing (a,b)+> M[b,cling,(b,c)-M InZ(6)

= Sufficient statistics that summarize the data: the joint
counts M[a,b], M[b,c] in D

= The first and second term involves ¢; and ¢, alone,
respectively.

= The third term is the log-partition function In Z, where
Z(0)= Y 4.(a,b)g,(b,c)

a,b,c

= In Z is a function of both ¢, and &,; it couples the two
potentials in the likelihood function.

= Consider MLE: In BNs, we could estimate each parameter
independently of the other ones. Here, when changing ¢, Z
changes, possibly changing the value of ¢, that maximizes
In Z(®@). — In MNs, we cannot estimate each parameter
independently.
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Log-Linear Model 1/2

= Given a set of features F={f(D))},_; _\, where f(D,) is a
feature function defined over the vdriables in DI , We

have:
{Ze ; <Di>}

P(X,,..., X,:0 _—ex
(X, ) 20 p 2
= For example, in the previous example, we
can define a set of features as: 4 (AB) o
{1 ,when A=a'and B=Db' 1
f1(Ar B): .
0 ,otherwise
,when A =a’and B =b° ¢,(B,C)

1
f,(AB)= )
2(AB) {O , otherwise G

= Let D be a data set of M instances D={§[1],..., E[M]},
and let F={f;,...,f} be a set of features that define a

model:
1(0:D) = 29(2 f; (§[m])J— M InZ(0)
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Log-Linear Model 2/2
1(0: D) =iz(9i(; fi(d[m])j— M InZ(0)

s Sufficient statistics: sums of the feature values in
the instances in D

= Dividing it by the number of instances M,
H10:D) = 0B, [£[4 1]~ InZ(0)

= where Ey[f; (d;)] is the empirical expectation of f;, that is,
its average frequency in the data set.
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Properties of the Likelihood Function

= The likelihood function is a sum of two functions.
1(0: D)=29{Z fi(f[m]))—l\/l InZ(0)

= The first function is linear in the parameters
(increasing the parameters directly increases this term)

= Let's examine the second term in more detail.

INZ(0) =In Zexp{fﬁi f (5)}
£ i
= One important property of the partition function is that
it is convex in the parameters ©.
= Proof? The Hessian — the matrix of the function’s
second derivatives — is positive semidefinite.

» The likelihood function is convex in @
27

Learning Undirected Graphs

= The likelihood function
= Log-linear representation
= Properties of the likelihood function

:>- Learning parameters
= Maximum likelihood estimation
= Generatively vs Discriminatively

Collective classification with HMM, MEMM, CRF
Learning with incomplete data

Learning structure (features)

Learning with alternative objectives
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Maximum Likelihood Estimation 1/2
= The average likelihood is

—|(9 D) = ZHED[f[d]] InZ(8)

= For a concave functlon the maxima are the points at
which the gradient is 0

0
@ZHjED[fj[dj]] =E,[f[di]]

i ) 1
6_49i|nZ(0) m EGXP{Zaifi(f)}

_Z (§)meXp{Z‘9ifi(§)}
—E ol fil
- : o 1
= Th dientis — —
e gradient is ” Ml(e D)=E,[f[d]]-E,[f]
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Maximum Likelihood Estimation 2/2

= The gradient is

—|(e D) = ME,[ f[d,]]- ME,[ f.]
06 7 S~

Number of times feature | | Expected number of times feature
f, is true in data D f, is true according to model

= The MLE of parameters ¢ satisfies, for all i,

ED[fi[di]]:Eé[fi]

= Numerical optimization: gradient ascent method
or 2" order-based (Newton’s method)
= Requires inference at each step (slow!)
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Conditionally Trained Models 1/2

= We often want to use a Markov network to perform a
particular inference task, where we have a known set
of observed variables X and a predetermined set of
variables Y that we want to query.

= Discriminative training

= We train the network as a conditional random field (CRF)
that encodes a conditional distribution P(Y|X)

» Training the model encoding P(Y,X) — generative training

= Given the training data consisting of pairs

D={(y[m],x[m])},-; _w Specifying assignments to Y
and X, an appropriaée gb'ective function to use in
this situation is the conditional likelihood.

lyx (8:D) =INP(y[L...,M]|x[L..., M],8)

= 3" InP(y{m] | x[m].0)

31

Conditionally Trained Models 2/2

= The gradient is

6 M

—lyx(8:D) =3 (f,(y[m], x[m]) - E, [, | x[m]])

a6, _mal—7 N\
Number of times feature f; Expected number of times feature f; is
is true in data D true according to model

= Deceptively similar to the generative training case!

= Key difference: Expected counts (2" term) are computed as
the summation of counts in M models defined by the different
values of the conditioning variables x[m].

= Inference: In generative training, each gradient step
required only a single execution of inference. When
training CRFs, we must execute inference for every
single training instance m, conditioning on x[m]
= The inference is executed on a simpler model, because

conditioning on evidence in a Markov network can only reduce
the computational cost.
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Learning Undirected Graphs

= The likelihood function
= Log-linear representation
= Properties of the likelihood function

= Learning parameters
= Maximum likelihood estimation
= Generatively vs Discriminatively

:>- Collective classification with HMM, MEMM, CRF
= Learning with incomplete data

= Learning structure (features)

= Learning with alternative objectives

33

Collective Classification

= Taking a set of interrelated instances and jointly
labeling them

= Example: handwriting recognition

l l l l E X A sequence of observations

= Use local information
= Exploit correlations

b r a c e Y Label them with some joint label

= Let’s discuss some of the trade-offs between
different models that one can apply to this task.

= We focus on the context of labeling instances organized
in a sequence (HMM, MEMM, CRF)
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