Outline

- Approximate Inference
- Inference as optimization
- Generalized Belief Propagation
- Propagation with approximate messages \leftarrow
- Factorized messages
- Approximate message propagation
- Structured variational approximations
- Learning Undirected Models

Propagation w. Approximate Msgs

- General idea
- Perform BP (or GBP) as before, but propagate messages that are only approximate
- Modular approach
- General inference scheme remains the same
- Can plug in many different approximate message computations

Factorized Messages

- Keep internal structure of the cliques in the tree
- Calibration involves sending messages that are joint over three variables
- Idea: simplify messages using factored representation
- Example: $\tilde{\delta}_{1 \rightarrow 2}\left[X_{11}, X_{21}, X_{31}\right]=\tilde{\delta}_{1 \rightarrow 2}\left[X_{11}\right] \tilde{\delta}_{1 \rightarrow 2}\left[X_{21}\right] \tilde{\delta}_{1 \rightarrow 2}\left[X_{31}\right]$

Markov network

Clique tree

Computational Savings 1/2

- Answering queries in Cluster 2
- Exact inference: $\pi_{2}=\pi_{2}^{0} \cdot \delta_{1 \rightarrow 2} \cdot \delta_{3 \rightarrow 2}$
- Exponential in joint space of cluster 2 (6 variables)

Computational Savings 2/2

- Answering queries in Cluster 2
. Exact inference* $\pi_{2}=\pi_{2}^{0} \cdot \delta_{1 \rightarrow 2} \cdot \delta_{3 \rightarrow 2}$ " Exponential in joint space of cluster 2 (6 variables)
- Approximate inference with factored messages
- Notice that subnetwork with factored messages is a tree
- Perform efficient exact inference on subtree to answer queries

Factor Sets

- A factor set $\phi=\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ provides a compact representation for high-dimensional factor $\phi_{1} \times, \ldots, \times \phi_{k}$
- Belief propagation
- Multiplication of factor sets
- Easy: simply the union of the factors in each factor set multiplied
- Marginalization of factor set: inference in simplified network
- Example: compute $\delta_{2 \rightarrow 3}$

$=\tilde{\delta}_{2 \rightarrow 3}\left[X_{12}\right] \tilde{\delta}_{2 \rightarrow 3}\left[X_{22}\right] \tilde{\delta}_{2 \rightarrow 3}\left[X_{32}\right]$

M-projection
$P\left(X_{1}, X_{2}, X_{3}\right) \approx P\left(X_{1}\right) P\left(X_{2}\right) P\left(X_{3}\right)$

Global Approximate Inference

- Inference as optimization
- Generalized Belief Propagation
- Define algorithm
- Constructing cluster graphs
- Analyze approximation guarantees
- Propagation with approximate messages
- Factorized messages
- Approximate message propagation
- Structured variational approximations

Approximate Message Propagation

- Input
- Clique tree (or cluster graph)
- Assignments of original factors π^{0} to clusters/cliques
- The factorized form of each sepset
- Can be represented by a network for each edge $C_{i}-C_{j}$ that specifies the factorization (in previous examples we assumed empty network)
- Two strategies for approximate message propagation
- Sum-product message passing scheme
- Belief update messages

Sum-Product Propagation

- Same propagation scheme as in exact inference
- Select a root
- Propagate messages towards the root
- Each cluster collects messages from its neighbors and sends outgoing messages when possible
- Propagate messages from the root
- Each message passing performs inference on cluster
- Terminates in a fixed number of iterations
- Note: final marginals at each variable are not exact

Message Passing: Belief Propagation

- Same as BP but with approximate messages
- Initialize the clique tree
- For each clique C_{i} set $\quad \tilde{\pi}_{i} \leftarrow \prod_{\phi ; \alpha(\phi)=i} \phi$
- For each edge $\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{j}}$ set $\tilde{\mu}_{i, j} \leftarrow 1$
- While unset cliques exist
- Select $\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{j}}$
- Send message from C_{i} to C_{j}
- Marginalize the clique over the sepset $\quad \tilde{\sigma}_{i \rightarrow j} \leftarrow \rho\left(\sum_{C_{i}-S_{i, j}} \tilde{\pi}_{i}\right)$
- Update the belief at $\mathrm{C}_{\mathrm{j}} \tilde{\pi}_{j} \leftarrow \tilde{\pi}_{j} \frac{\tilde{\sigma}_{i \rightarrow j}}{\widetilde{\mu}_{\mathrm{i}, \mathrm{j}}}$
- Update the sepset at $\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{j}} \quad \tilde{\mu}_{\mathrm{i}, \mathrm{j}} \leftarrow \tilde{\sigma}_{i \rightarrow j}$

Global Approximate Inference

- Inference as optimization
- Generalized Belief Propagation
- Define algorithm
- Constructing cluster graphs
- Analyze approximation guarantees
- Propagation with approximate messages
- Factorized messages
- Approximate message propagation

Structured variational approximations

Structured Variational Approx.

- Select a simple family of distributions \mathbf{Q}
- Find $\mathrm{Q} \in \mathbf{Q}$ that maximizes $F\left[\mathrm{P}_{\mathrm{F}}, \mathrm{Q}\right]$

Mean Field Approximation

- $\mathrm{Q}(\mathrm{x})=\Pi \mathrm{Q}\left(\mathrm{X}_{\mathrm{i}}\right)$
- Q loses much of the information of P_{F}
- Approximation is computationally attractive
- Every query in Q is simple to compute
- Q is easy to represent

Mean Field Approximation

- The energy functional is easy to compute, even for networks where inference is complex
- The energy functional for a fully factored distribution Q can be rewritten simply as a sum of expectations, each one over a small set of variables.

$$
\begin{aligned}
& F\left[P_{F}, Q\right]=\sum_{\phi \in F} E_{Q}[\ln \phi]+H_{Q}(\mathbf{U}) \\
& E_{Q}[\ln \phi]=\sum_{\mathbf{u}_{\phi}} Q\left(\mathbf{u}_{\phi}\right) \ln \phi\left(\mathbf{u}_{\phi}\right)=\sum_{\mathbf{u}_{\phi}}\left(\prod_{x_{i} \in \mathbf{u}_{\phi}} Q\left(x_{i}\right)\right) \ln \phi\left(\mathbf{u}_{\phi}\right) \\
& \quad H_{Q}(\mathbf{U})=\sum_{i} H_{Q}\left(X_{i}\right)
\end{aligned}
$$

- The complexity of this expression depends on the size of the factors in P_{F}, and not on the topology of the network.

Mean Field Maximization

- Maximizing the Energy Functional of Mean-Field
- Find $\mathrm{Q}(\mathrm{x})=\Pi \mathrm{Q}\left(\mathrm{X}_{\mathrm{i}}\right)$ that maximizes $\mathrm{F}\left[\mathrm{P}_{\mathrm{F}}, \mathrm{Q}\right]$
- Subject to for all i : $\Sigma_{x_{i}} Q\left(x_{i}\right)=1$

Mean Field Maximization

- Theorem: $Q\left(X_{i}\right)$ is a local maximum of the mean field given $\mathrm{Q}\left(\mathrm{X}_{1}\right), \ldots \mathrm{Q}\left(\mathrm{X}_{\mathrm{i}-1}\right), \mathrm{Q}\left(\mathrm{X}_{\mathrm{i}+1}\right), \ldots \mathrm{Q}\left(\mathrm{X}_{\mathrm{n}}\right)$ if and only if

$$
Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in F} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}
$$

- Proof in K\&F on pages 451-452

P_{F} - Markov grid network

Q - Mean field network

Mean Field Maximization: Intuition

- We can rewrite $Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in F} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}$ as: $Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{E_{Q}\left[\ln P_{F}\left(x_{i} \mid \mathbf{X}_{-i}\right)\right]\right\} \exp \left\{E_{Q}\left[\ln Z P_{F}\left(\mathbf{X}_{-i}\right)\right]\right\}$ Doesn't depend on x_{i}. $Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{E_{Q}\left[\ln P_{F}\left(x_{i} \mid \mathbf{X}_{-i}\right)\right]\right\}$
- $\mathrm{Q}\left(\mathrm{x}_{\mathrm{i}}\right)$ is the geometric average of $\mathrm{P}_{\mathrm{F}}\left(\mathrm{x}_{\mathrm{i}} \mid \mathbf{X}_{-\mathrm{i}}\right)$
- Relative to the probability distribution Q
- In this sense, marginal is "consistent" with other marginals
- In P_{F} we can also represent marginals

$$
P_{F}\left(x_{i}\right)=\sum_{\mathbf{x}_{-i}} P_{F}\left(\mathbf{x}_{-i}\right) P_{F}\left(x_{i} \mid \mathbf{x}_{-i}\right)=E_{P_{F}}\left[P_{F}\left(x_{i} \mid \mathbf{x}_{-i}\right)\right]
$$

- Arithmetic average with respect to P_{F}

Mean Field: Algorithm

- Since terms that do not involve x_{i} can be "absorbed" into the normalization constant,
- Simplify: $Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi \in F} E_{Q}\left[\ln \phi \mid x_{i}\right]\right\}$
- To: $Q\left(x_{i}\right)=\frac{1}{Z_{i}} \exp \left\{\sum_{\phi: x_{i} \in \operatorname{scope}(\phi)} E_{[}\left[\ln \phi\left(U_{\phi}, x_{i}\right)\right]\right\}$
- Note: $\mathrm{Q}\left(\mathrm{x}_{\mathrm{i}}\right)$ does not appear on right hand side
- Can solve and reach optimal $\mathrm{Q}\left(\mathrm{x}_{\mathrm{i}}\right)$ in one step
- Note: step is only optimal given all other $\mathrm{Q}\left(\mathrm{X}_{\mathrm{j}}\right)(\mathrm{j} \neq \mathrm{i})$
- Suggests an iterative algorithm: in each step, find the optimal $\mathrm{Q}\left(\mathrm{x}_{\mathrm{i}}\right)$, given all the other $\mathrm{Q}\left(\mathrm{X}_{\mathrm{j}}\right)(\mathrm{j} \neq \mathrm{i})$
- Convergence guaranteed to local maxima since each step improves $\mathrm{F}\left[\mathrm{P}_{\mathrm{F}}, \mathrm{Q}\right]$

Structured Approximations

- Can use Q that are increasingly complex
- As long as Q is easy (=inference feasible) efficient update equations can be derived

LEARNING UNDIRECTED GRAPHICAL MODELS

Learning Undirected Graphs

The likelihood function

- Log-linear representation
- Properties of the likelihood function
- Learning parameters (weights)
- Maximum likelihood estimation
- Generatively vs Discriminatively
- Learning with alternative goals
- Learning with incomplete data
- Learning structure (features)

The Likelihood Function 1/2

- Consider the very simple network, parameterized by two potentials $\phi_{1}(\mathrm{~A}, \mathrm{~B})$ and $\phi_{2}(B, C)$
- The log-likelihood of an instance <a,b,c> :
$\ln P(a, b, c)=\ln \phi_{1}(a, b)+\ln \phi_{2}(b, c)-\ln Z$
- where Z is the partition function that ensures the distribution sums up to 1 .
- Now, consider the log-likelihood function for a data set D containing M instances:

$$
\begin{aligned}
l(\boldsymbol{\theta}: D) & =\sum_{m}\left[\ln \phi_{1}(a[m], b[m])+\ln \phi_{2}(b[m], c[m])-\ln Z(\boldsymbol{\theta})\right] \\
& =\sum_{a, b} M[a, b] \ln \phi_{1}(a, b) \sum_{b, c} M[b, c] \ln \phi_{2}(b, c)-M \ln Z(\boldsymbol{\theta})
\end{aligned}
$$

The Likelihood Function 2/2

$l(\boldsymbol{\theta}: D)=\sum_{a, b} M[a, b] \ln \phi_{1}(a, b)+\sum_{b, c} M[b, c] \ln \phi_{2}(b, c)-M \ln Z(\boldsymbol{\theta})$

- Sufficient statistics that summarize the data: the joint counts $M[a, b], M[b, c]$ in D
- The first and second term involves ϕ_{1} and ϕ_{2} alone, respectively.
- The third term is the log-partition function $\ln Z$, where

$$
Z(\boldsymbol{\theta})=\sum_{a, b, c} \phi_{1}(a, b) \phi_{2}(b, c)
$$

- In Z is a function of both ϕ_{1} and ϕ_{2}; it couples the two potentials in the likelihood function.
- Consider MLE: In BNs, we could estimate each parameter independently of the other ones. Here, when changing ϕ_{1}, Z changes, possibly changing the value of ϕ_{2} that maximizes In Z(0). \rightarrow In MNs, we cannot estimate each parameter independently.

Log-Linear Model 1/2

- Given a set of features $F=\left\{f_{i}\left(\mathbf{D}_{i}\right)\right\}_{i=1}$, ${ }^{k}$, where $f_{i}\left(\mathbf{D}_{i}\right)$ is a feature function defined over the vari'íables in \mathbf{D}_{i}, we have:

$$
P\left(X_{1}, \ldots, X_{n}: \boldsymbol{\theta}\right)=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i=1}^{k} \theta_{i} f_{i}\left(\mathbf{D}_{i}\right)\right\}
$$

- For example, in the previous example, we can define a set of features as:
$f_{1}(A, B)= \begin{cases}1 & \text {, when } A=a^{1} \text { and } B=b^{1} \\ 0 & \text {, otherwise }\end{cases}$
$\phi_{1}(A, B)$
$f_{2}(A, B)= \begin{cases}1 & \text {, when } \mathrm{A}=\mathrm{a}^{1} \text { and } \mathrm{B}=\mathrm{b}^{0} \\ 0 & \text {, otherwise }\end{cases}$
$\phi_{2}(B, C)$:
- Let D be a data set of M instances $D=\{\xi[1], \ldots, \xi[M]\}$, and let $F=\left\{f_{1}, \ldots, f_{k}\right\}$ be a set of features that define a model:

$$
l(\boldsymbol{\theta}: D)=\sum_{i} \theta_{i}\left(\sum_{m} f_{i}(\xi[m])\right)-M \ln Z(\boldsymbol{\theta})
$$

Log-Linear Model 2/2

$l(\boldsymbol{\theta}: D)=\sum_{i} \theta_{i}\left(\sum_{m} f_{i}(d[m])\right)-M \ln Z(\boldsymbol{\theta})$

- Sufficient statistics: sums of the feature values in the instances in D
- Dividing it by the number of instances M,

$$
\frac{1}{M} l(\boldsymbol{\theta}: D)=\sum_{i} \theta_{i} \mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right]-\ln Z(\boldsymbol{\theta})
$$

- where $\mathbf{E}_{D}\left[f_{i}\left(\mathbf{d}_{i}\right)\right]$ is the empirical expectation of f_{i}, that is, its average frequency in the data set.

Properties of the Likelihood Function

- The likelihood function is a sum of two functions.

$$
l(\boldsymbol{\theta}: D)=\sum_{i} \theta_{i}\left(\sum_{m} f_{i}(\xi[m])\right)-M \ln Z(\boldsymbol{\theta})
$$

- The first function is linear in the parameters (increasing the parameters directly increases this term)
- Let's examine the second term in more detail.

$$
\ln Z(\boldsymbol{\theta})=\ln \sum_{\xi} \exp \left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\}
$$

- One important property of the partition function is that it is convex in the parameters $\boldsymbol{0}$.
- Proof? The Hessian - the matrix of the function's second derivatives - is positive semidefinite.
- The likelihood function is convex in $\mathbf{0}$

Learning Undirected Graphs

- The likelihood function
- Log-linear representation
- Properties of the likelihood function

Learning parameters

- Maximum likelihood estimation
- Generatively vs Discriminatively
- Collective classification with HMM, MEMM, CRF
- Learning with incomplete data
- Learning structure (features)
- Learning with alternative objectives

Maximum Likelihood Estimation 1/2

- The average likelihood is

$$
\frac{1}{M} l(\boldsymbol{\theta}: D)=\sum_{i} \theta_{i} \mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right]-\ln Z(\boldsymbol{\theta})
$$

- For a concave function, the maxima are the points at which the gradient is 0

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} \sum_{j} \theta_{j} \mathbf{E}_{D}\left[f_{j}\left[\mathbf{d}_{j}\right]\right] & =\mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right] \\
\frac{\partial}{\partial \theta_{i}} \ln Z(\boldsymbol{\theta}) & =\frac{1}{Z(\boldsymbol{\theta})} \sum_{\xi} \frac{\partial}{\partial \theta_{i}} \exp \left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\} \\
& =\sum_{\xi} f_{i}(\xi) \frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} f_{i}(\xi)\right\} \\
& =\mathbf{E}_{\theta}\left[f_{i}\right]
\end{aligned}
$$

- The gradient is $\frac{\partial}{\partial \theta_{i}} \frac{1}{M} l(\boldsymbol{\theta}: D)=\mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right]-\mathbf{E}_{\theta}\left[f_{i}\right]$

Maximum Likelihood Estimation 2/2

- The gradient is

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{i}} l(\boldsymbol{\theta}: D)=M \mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right]-M \mathbf{E}_{\theta}\left[f_{i}\right] \\
& \begin{array}{l}
\text { Number of times feature } \\
f_{\mathrm{i}} \text { is true in data } \mathrm{D}
\end{array} \\
& \begin{array}{l}
\text { Expected number of times feature } \\
\mathrm{f}_{\mathrm{i}} \text { is true according to model }
\end{array} \\
& \hline
\end{aligned}
$$

- The MLE of parameters $\hat{\boldsymbol{\theta}}$ satisfies, for all i ,

$$
\mathbf{E}_{D}\left[f_{i}\left[\mathbf{d}_{i}\right]\right]=\mathbf{E}_{\hat{\theta}}\left[f_{i}\right]
$$

- Numerical optimization: gradient ascent method or $2^{\text {nd }}$ order-based (Newton's method)
- Requires inference at each step (slow!)

Conditionally Trained Models 1/2

- We often want to use a Markov network to perform a particular inference task, where we have a known set of observed variables \mathbf{X} and a predetermined set of variables \mathbf{Y} that we want to query.
- Discriminative training
- We train the network as a conditional random field (CRF) that encodes a conditional distribution $\mathbf{P}(\mathbf{Y} \mid \mathbf{X})$
- Training the model encoding $\mathbf{P}(\mathbf{Y}, \mathbf{X})$ - generative training
- Given the training data consisting of pairs
$\mathrm{D}=\{(\mathbf{y}[\mathrm{m}], \mathbf{x}[\mathrm{m}])\}_{\mathrm{m}=1, \ldots, \mathrm{~m}}$, specifying assignments to \mathbf{Y} and \mathbf{X}, an appropriate 'objective function to use in this situation is the conditional likelihood.

$$
\begin{aligned}
l_{\mathbf{Y} \mid \mathbf{X}}(\boldsymbol{\theta}: D) & =\ln P(\mathbf{y}[1, \ldots, M] \mid \mathbf{x}[1, \ldots, M], \boldsymbol{\theta}) \\
& =\sum_{m=1}^{M} \ln P(\mathbf{y}[m] \mid \mathbf{x}[m], \boldsymbol{\theta})
\end{aligned}
$$

Conditionally Trained Models 2/2

- The gradient is
$\frac{\partial}{\partial \theta_{i}} l_{\mathbf{Y} \mid \mathbf{X}}(\boldsymbol{\theta}: D)=\sum_{m=1}^{M}\left(f_{i}(\mathbf{y}[m], \mathbf{x}[m])-\mathbf{E}_{\boldsymbol{\theta}}\left[f_{i} \mid \mathbf{x}[m]\right]\right)$
Number of times feature f_{i}
Expected number of times feature f_{i} is is true in data D true according to model
- Deceptively similar to the generative training case!
- Key difference: Expected counts (2 ${ }^{\text {nd }}$ term) are computed as the summation of counts in M models defined by the different values of the conditioning variables $\mathbf{x}[\mathrm{m}]$.
- Inference: In generative training, each gradient step required only a single execution of inference. When training CRFs, we must execute inference for every single training instance m, conditioning on $\mathbf{x}[\mathrm{m}]$
- The inference is executed on a simpler model, because conditioning on evidence in a Markov network can only reduce the computational cost.

Learning Undirected Graphs

- The likelihood function
- Log-linear representation
- Properties of the likelihood function
- Learning parameters
- Maximum likelihood estimation
- Generatively vs Discriminatively

Collective classification with HMM, MEMM, CRF

- Learning with incomplete data
- Learning structure (features)
- Learning with alternative objectives

Collective Classification

- Taking a set of interrelated instances and jointly labeling them
- Example: handwriting recognition

\mathbf{X} A sequence of observations
- Use local information
- Exploit correlations

0 ? C y Label them with some joint label

- Let's discuss some of the trade-offs between different models that one can apply to this task.
- We focus on the context of labeling instances organized in a sequence (HMM, MEMM, CRF)

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

