Exact Inference Algorithms: Conditioning, Clique Trees

Lecture 7 - Apr 18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Announcement

- Problem Set \#2 is ready.
- Check course website or pick it up.
- 7 Questions. Hard. Please start working on it today.
- Discussion OK! Check collaboration policy.

Variable Elimination Algorithm

- Goal: $\mathrm{P}(\mathrm{J}) \rightarrow$ query variable(s) can be anything

$$
P(J)=\sum_{L, S, G, H, L, C, C}^{P(C, D, I, H, G, S, L)}
$$

- Eliminate ordering: C,D,I,H,G,S,L
- Compute:

- Computational complexity:
- $\mathrm{O}\left(\mathrm{n}\right.$ max $\left._{\mathrm{i}}\left|\operatorname{Val}\left(\mathbf{X}_{\mathrm{i}}\right)\right|\right)$, where n is the number of variables

Part I

EXACT I NFERENCE:
 CONDI TI ONI NG

Inference By Conditioning

- Goal: compute $\quad P(J)$
- General idea
- Enumerate the possible values i of a variable I
- Apply Variable Elimination in a simplified network $P(J, I=i)$
- Aggregate the results $P(J)=\sum_{i \in \operatorname{Val}(I)} P(J, I=i)$

Cutset Conditioning

- Select a subset of nodes $\mathbf{X} \subset \mathbf{U}$
- \mathbf{X} is a cutset in G if $\mathrm{G}_{\mathbf{X}=\mathbf{x}}$ is a polytree (no loop)

Cutset Conditioning

- Select a subset of nodes $\mathbf{X} \subset \mathbf{U}$
- \mathbf{X} is a cutset in G if $\mathrm{G}_{\mathrm{X}=\mathrm{x}}$ is a polytree
- Define the conditional Bayesian network $G_{\mathrm{X}=\mathrm{x}}$
- $G_{\mathrm{X}=\mathrm{x}}$ has the same variables as G
- $G_{X=x}$ has the same structure as G except that all outgoing edges of nodes in \mathbf{X} are deleted, and CPDs of nodes in which edges were deleted are updated to

$$
P_{G_{X=x}}(Y \mid P a(Y)-\boldsymbol{X})=P_{G}(Y \mid P a(Y), \boldsymbol{X}=\boldsymbol{x})
$$

- Compute original $\mathrm{P}(\mathbf{Y})$ query by
- Exponential in cutset $\quad P_{G}(\boldsymbol{Y})=\sum_{x \in \operatorname{Val}(\boldsymbol{X})} P_{G_{X=x}}(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y})$

Computational Complexity

- Variable elimination

$$
\begin{aligned}
P(J) & =\sum_{C} \sum_{D} \sum_{I} \sum_{S} \sum_{G} \sum_{L} \sum_{H} P(C, D, I, S, G, L, H, J) \quad(*) \\
& =\sum_{L} \sum_{S} P(J \mid L, S) \sum_{G} P(L \mid G) \sum_{H} P(H \mid G, J) \sum_{I} P(I) P(S \mid I) \sum_{D} P(G \mid D, I) \sum_{C} P(C) P(D \mid C)
\end{aligned}
$$

- Conditioning ($\mathbf{U}=\mathbf{u}$)
- Reordering the expression (*) slightly, we have that:
$P(J)=\sum_{g}\left[\sum_{C} \sum_{D} \sum_{I} \sum_{S} \sum_{L} \sum_{H} P(C, D, I, S, G=g, L, H, J)\right]$
- In general, both algorithms are performing the same set of basic operations (sums and products).
- Any advantages?
- Memory gain
- Forms the basis for a useful approximate inference algorithms (later)

Part II
 EXACT I NFERENCE: CLI QUE TREES

Inference with Clique Trees

- Exploits factorization of the distribution for efficient inference, similar to variable elimination
- Uses global data structures (cluster graphs)
- Deals with a distribution given by (possibly unnormalized) measure

$$
P_{F}(\boldsymbol{U})=\prod_{\phi \in \in F} \phi^{\prime}
$$

- For Bayesian networks, factors are CPDs
- For Markov networks, factors are clique potentials

Variable Elimination \& Clique Trees

- Variable elimination
- Each step creates a factor π_{i} through multiplication
- A variable is then eliminated in π_{i} to generate new factor τ_{i}
- Process repeated until product contains only query variables
$P(J)=\sum_{L} \sum_{S} P(J \mid L, S) \sum_{G} P(L \mid G) \sum_{H} P(H \mid G, J) \sum_{I} P(I) P(S \mid I) \sum_{D} P(G \mid D, I) \sum_{C} P(C) P(D \mid C)$
- Clique tree inference
- Another view of the above computation
- General idea: π_{j} is a computational data structure which takes "messages" τ_{i} generated by other factors π_{i} and generates a message τ_{j} which is used by another factor π_{k}

Cluster Graph

- Data structure providing flowchart of the factor manipulation process
- A cluster graph K for factors F is an undirected graph
- Nodes are associated with a subset of variables $\mathbf{C}_{\mathbf{i}} \subseteq \mathbf{U}$
- The graph is family preserving: each factor $\phi \in \mathrm{F}$ is associated with one node $\mathbf{C}_{\mathbf{i}}$ such that Scope $[\phi] \subseteq \mathbf{C}_{\mathbf{i}}$
- Each edge $\mathbf{C}_{\mathbf{i}}-\mathbf{C}_{\mathbf{j}}$ is associated with a sepset $\mathbf{S}_{\mathbf{i}, \mathrm{j}}=\mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathbf{j}}$
- Key: variable elimination defines a cluster graph
- Cluster $\mathbf{C}_{\mathbf{i}}$ for each factor π_{i} used in the computation
- Draw edge $\mathbf{C}_{i}-\mathbf{C}_{\mathbf{j}}$ if the factor generated from π_{i} is used in the computation of π_{j}

Simple Exar"
Key: variable elimination defines a cluster graph - Cluster \mathbf{C}_{i} for each factor π_{i} used in the computation - Draw edge $\mathbf{C}_{i}-\mathbf{C}_{j}$ if the factor generated from π_{i} is used in
 the computation of π_{j}

Variable elimination

> Cluster graph

$$
\begin{aligned}
P\left(X_{3}\right) & =\sum_{X_{1}} \sum_{X_{2}} P\left(X_{1}, X_{2}, X_{3}\right) \\
& =\sum_{X_{1}} \sum_{X_{2}} P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \\
& =\sum_{X_{2}} P\left(X_{3} \mid X_{2}\right) \sum_{X_{1}} P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \\
& =\sum_{X_{2}} P\left(X_{3} \mid X_{2}\right) \tau_{1}\left(X_{2}\right) \\
& =\tau_{2}\left(X_{3}\right)
\end{aligned}
$$

$$
C_{1}=\left\{X_{1}, X_{2}\right\}
$$

- A cluster graph K for factors F is an undirected graph $P\left(X_{1}\right)$
- Nodes are associated with a subset of variables $\mathbf{C}_{i}=\mathbf{U}$
- The graph is family preserving: each factor $\phi \in F$ is associated with one node $\mathbf{C}_{\mathbf{i}}$ such that Scope $[\phi] \subset \mathbf{C}_{\mathbf{i}}$
- Each edge $\mathbf{C}_{\mathbf{i}}-\mathbf{C}_{\mathbf{j}}$ is associated with a sepset $\mathbf{S}_{\mathrm{i}, \mathrm{j}}=\mathbf{C}_{\mathbf{i}} \cap \mathbf{C}_{\mathrm{j}}$

A More Complex Example

$P(J)=\sum_{L, S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{1}(I) \phi_{S}(S, I) \sum_{D} \phi_{G}(G, I, D) \sum_{C} \phi_{D}(C, D) \phi_{C}(C)$

- Goal: P(J), Eliminate: C,D,I,H,G,S,L
- C: $\tau_{1}(D)=\sum_{C} \phi_{C}(C) \phi_{D}(C, D)$
- D: $\tau_{2}(G, I)=\sum_{n} \phi_{G}(G, I, D)_{1}(D)$
- I: $\quad \tau_{3}(G, S)=\sum \phi_{1}(I) \phi_{s}(S, I) \tau_{2}(G, I)$
- H: $\tau_{4}(G, J)=\sum_{H} \tau_{H}(H, G, J)$
- G: $\tau_{5}(J, L, S)=\sum \phi_{1}(L, G) \tau_{3}(G, S) \tau_{4}(G, J)$
- $\mathrm{S}: \tau_{6}(J, L)=\sum_{S^{\prime}} \phi(J, L, S) \tau_{5}(J, L, S)$
- L: $\tau_{7}(J)=\sum \tau_{6}(J, L)$

Key: variable elimination defines a cluster graph

- Cluster \mathbf{C}_{i} for each factor π_{i} used in the computation
- Draw edge $\mathbf{C}_{\mathbf{i}}-\mathbf{C}_{\mathbf{j}}$ if the factor generated from π_{i} is used in the computation of π_{j}

Properties of Cluster Graphs

- Cluster graphs are trees
- In VE, each intermediate factor π_{i} is used only once
- Hence, each cluster "passes" an edge (message τ_{i}) to exactly one other cluster
- Cluster graphs obey the running intersection property
- If $X \in C_{i}$ and $X \in C_{j}$ then X is in each cluster in the (unique) path between C_{i} and C_{j}

- Tree and family preserving
- Running intersection property

Running Intersection Property

- Theorem: If T is a cluster tree induced by VE over factors F, then T obeys the running intersection property
- Proof:
- Let C and C^{\prime} be two clusters that contain X
- Let C_{X} be the cluster where X is eliminated
- $\rightarrow X$ must be present on each cluster on C to C_{x} path
- Computation at C_{x} must be after computation at C
- X is in C by assumption and since X is not eliminated in C, then X is in the factor generated by C
- By definition, C's neighbor multiplies factor generated by C and thus (multiplies X and) has X in its scope
- By induction for all other nodes on the path
- $\rightarrow X$ appears in all clusters between C and C_{X}
(1) ${ }_{2}^{D, I, D} \underset{G, S}{G, I}$

Clique Tree

- A cluster graph over factors F that satisfies the running intersection property is called a clique tree
- Clusters C_{i} in a clique tree are also called cliques
- We saw, variable elimination \rightarrow clique tree
- Now we will see clique tree \rightarrow variable elimination
- Clique tree advantage: data structure for caching computations allowing multiple VE runs to be performed more efficiently than separate VE runs

We begin with an example and then describe the general algorithm ...

Clique Tree Inference

- Goal: Compute P(J)

- Running intersection property

Clique Tree Inference

- Goal: Compute $\mathrm{P}(\mathrm{J})$ - define root clique $\mathrm{C}_{\mathrm{r}}=\mathrm{C}_{5}$
- Set initial factors (CPD) at each cluster as products $\pi_{\mathrm{i}}{ }^{\circ}$ C
- C_{1} : Eliminate C, sending a message $\delta_{1 \rightarrow 2}(D)$ to C_{2}
- C_{2} : Eliminate D, sending $\delta_{2 \rightarrow 3}(\mathrm{G}, \mathrm{I})$ to C_{3}
- C_{3} : Eliminate I, sending $\delta_{3 \rightarrow 5}(\mathrm{G}, \mathrm{S})$ to C_{5}
- C_{4} : Eliminate H , sending $\delta_{4 \rightarrow 5}(\mathrm{G}, \mathrm{J})$ to C_{5}
- C_{5} : Obtain $\mathrm{P}(\mathrm{J})$ by summing out $\mathrm{G}, \mathrm{S}, \mathrm{L}$ from $\pi_{0}\left(\mathrm{C}_{5}\right) \delta_{3 \rightarrow 5} \delta_{4 \rightarrow 5}$

Clique Tree Inference

- Goal: Compute $\mathrm{P}(\mathrm{J})$ - define root clique $\mathrm{C}_{\mathrm{r}}=\mathrm{C}_{4}$
- Set initial factors (CP DI) at each cluster as products π_{i}^{0}
- C_{1} : Eliminate C, sending a message $\delta_{1 \rightarrow 2}(D)$ to C_{2}
- C_{2} : Eliminate D, sending $\delta_{2 \rightarrow 3}(\mathrm{G}, \mathrm{I})$ to C_{3}
- C_{3} : Eliminate I, sending $\delta_{3 \rightarrow 5}(\mathrm{G}, \mathrm{S})$ to C_{5}
- C_{5} : Eliminate S, L, sending $\delta_{5 \rightarrow 4}(\mathrm{G}, \mathrm{J})$ to C_{4}
- C_{4} : Obtain $\mathrm{P}(\mathrm{J})$ by summing out H, G from $\pi_{0}\left(\mathrm{C}_{4}\right) \delta_{5 \rightarrow 4}$

Clique Tree Inference

C5 as the root

C4 as the root

Legal ordering

- The only constraint is that a clique gets all of its incoming messages from its downstream neighbors before it sends its outgoing message toward its upstream neighbor.
- We say that C_{i} is ready to transmit to a neighbor C_{j} when C_{i} has messages from all of its neighbors except for C_{j}.
- Example
- Root C6
- Legal ordering I: 1,2,3,4,5,6
- Legal ordering II: 2,5,1,3,4,6
- Illegal ordering: 3,4,1,2,5,6

Here is the general algorithm

Clique Tree Message Passing

- Let T be a clique tree and $C_{1}, \ldots C_{k}$ its cliques
- Multiply factors (CPDs) assigned to each clique, resulting in initial potentials as each factor is assigned to some clique $\alpha(\phi)$:

- If our goal is to compute $\mathrm{P}(\mathrm{J})$, any clique containing J can be C_{r}
- Use the clique-tree data structure to pass messages between neighboring cliques, sending all messages toward C_{r}
- Start from tree leaves and move inward
- Let $\mathrm{p}_{\mathrm{r}}(\mathrm{i})$ be the upstream neighbor of i (on the path to C_{r})
- Each C_{i} performs a computation that sends message δ_{i} to $C_{p_{r}(i)}$
- Multiply all incoming messages from downstream neighbors with the initial clique potential resulting in a factor whose scope is the clique
- Sum out all variables except those in the sepset $\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{p}_{\mathrm{r}}(\mathrm{i})}$

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \pi_{i}^{0}\left[C_{i}\right] \quad \prod_{k \in\{\text { neighbors of } \mathrm{i} \text { except for } \mathrm{j}\}} \delta_{k \rightarrow i}
$$

Clique Tree Message Passing

- Let T be a clique tree and $\mathrm{C}_{1}, \ldots \mathrm{C}_{\mathrm{k}}$ its cliques
- Multiply factors (CPDs) assigned to each clique, resulting in initial

- If our goal is to compute $\mathrm{P}(\mathrm{J})$, any cluster containing J can be C_{r}
- Use the clique-tree data structure to pass messages between neighboring cliques, sending all messages toward C_{r}
- Start from tree leaves and move inward
- Let $\mathrm{p}_{\mathrm{r}}(\mathrm{i})$ be the upstream neighbor of i (on the path to C_{r})
- Each C_{i} performs a computation that sends message δ_{i} to $\mathrm{C}_{\mathrm{p}_{\mathrm{r}}(\mathrm{i})}$

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \pi_{i}^{0}\left[C_{i}\right] \prod_{k \in\{\text { neighbors of i except for } \mathrm{j}\}} \delta_{k \rightarrow i}
$$

- When the root clique C_{r} has received all messages, it multiplies them with its own initial potential, resulting in a factor called the belief - $\pi_{r}\left[C_{r}\right]=\pi_{r}^{0}\left[C_{r}\right] \prod_{i \in \in \text { neigbloboso } r \text { r }} \sum_{i \rightarrow r}$ representing $\quad P\left(C_{r}\right)=\sum_{U-C_{r}} \prod_{\phi} \phi$

Clique Tree Inference Correctness

- Theorem
- Let C_{r} be the root clique in a clique tree
- If π_{r} is computed as above, then $\pi_{r}\left[C_{r}\right]=\sum_{U-C_{r}} P_{F}(\mathbf{U})$
- Algorithm applies to Bayesian and Markov networks
- For Bayesian network G, if F consists of the CPDs reduced with some evidence \mathbf{e} then $\pi_{r}\left[\mathrm{C}_{\mathrm{r}}\right]=\mathrm{P}_{\mathrm{G}}\left(\mathrm{C}_{\mathrm{r}}, \mathbf{e}\right)$
- Probability obtained by normalizing the factor over C_{r} to sum to 1
- For Markov network H, if F consists of a set of clique potentials, then $\pi_{\mathrm{r}}\left[\mathrm{C}_{\mathrm{r}}\right]=\mathrm{P}_{\mathrm{H}}\left(\mathrm{C}_{\mathrm{r}}\right)$
- Probability obtained by normalizing the factor over C_{r} to sum to 1
- Partition function obtained by summing up all entries in $\pi_{\mathrm{r}}\left[\mathrm{C}_{\mathrm{r}}\right]$

Clique Tree Calibration

- Assume we want to compute marginal distributions over n variables: $P\left(X_{1}\right), \ldots, P\left(X_{n}\right)$
- With variable elimination, we perform n separate VE runs
- With clique trees, we can do this much more efficiently
- Idea 1: since marginal over a variable can be computed from any root clique that includes it, perform k clique tree runs ($k=$ \# cliques)
- Idea 2: Can do much better! How?

Clique Tree Calibration

- Observation: a message from C_{i} to C_{j} is unique
- Consider two neighboring cliques C_{i} and C_{j}
- If root C_{r} is on C_{j} side, C_{i} sends C_{j} a message
- Message does not depend on specific C_{r} (we only need C_{r} to be on the C_{j} side for C_{i} to send a message to C_{j})
\rightarrow Message from C_{i} to C_{j} will always be the same, regardless of what the query variables are.

C5 as the root

C4 as the root

Clique Tree Calibration

- Observation: a message from C_{i} to C_{j} is unique
- Consider two neighboring cliques C_{i} and C_{j}
- If root C_{r} is on C_{j} side, C_{i} sends C_{j} a message
- Message does not depend on specific C_{r} (we only need C_{r} to be on the C_{j} side for C_{i} to send a message to C_{j})
\rightarrow Message from C_{i} to C_{i} will always be the same, regardless of what the query variables are.
- Each edge has two messages associated with it
- One message for each direction of the edge
- There are only $2(k-1)$ messages to compute
- Can then readily compute the marginal probability over each variable
- Compute 2(k-1) messages by
- Pick any node as the root
- Upward pass: send messages to the root
- Terminate when root received all messages
- Downward pass: send messages to root children
- Terminate when all leaves received messages

Clique Tree Calibration

- Theorem
- "Belief" π_{i} is computed for each clique i as above:

$$
\pi_{i}\left[C_{i}\right]=\pi_{i}^{0}\left[C_{i}\right] \prod_{j \in \text { neighborsof } i\}} \delta_{j \rightarrow i}=\sum_{U-C_{i}} P_{F}(\mathbf{U})
$$

- Important: avoid double-counting!
- Each node i computes the message to its neighbor j using its initial potentials $\pi_{i}{ }_{i}$ and not its updated potential ("belief") π_{i}, since π_{i} integrates information from C_{j} which will be counted twice

Acknowledgement

- These lecture notes were generated based on the slides from Prof Eran Segal.

