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Lecture 7 – Apr 18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Exact Inference Algorithms:
Conditioning, Clique Trees

Readings: K&F 9.5, 10.1, 10.2, 10.3 (10.4)

Announcement
Problem Set #2 is ready.

Check course website or pick it up.
7 Questions. Hard. Please start working on it today.
Discussion OK!  Check collaboration policy.
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Variable Elimination Algorithm
Goal: P(J) → query variable(s) can be anything

Eliminate ordering: C,D,I,H,G,S,L

Compute: 

Computational complexity:
O(n maxi|Val(Xi)|), where n is the number of variables
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EXACT INFERENCE:
CONDITIONING

Part I
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Inference By Conditioning
Goal: compute 
General idea

Enumerate the possible values i of a variable I
Apply Variable Elimination in a simplified network
Aggregate the results
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Observe I=i

Transform CPDs of G and S 
to eliminate I as parent

I
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Cutset Conditioning
Select a subset of nodes X⊂U
X is a cutset in G if GX=x is a polytree (no loop)
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Cutset Conditioning
Select a subset of nodes X⊂U
X is a cutset in G if GX=x is a polytree

Define the conditional Bayesian network GX=x
GX=x has the same variables as G
GX=x has the same structure as G except that all outgoing 
edges of nodes in X are deleted, and CPDs of nodes in 
which edges were deleted are updated to 

Compute original P(Y) query by
Exponential in cutset
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Computational Complexity
Variable elimination

Conditioning (U=u)

Reordering the expression (*) slightly, we have that:

In general, both algorithms are performing the same set of basic 
operations (sums and products).

Any advantages?
Memory gain

Forms the basis for a useful approximate inference algorithms (later)
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EXACT INFERENCE:
CLIQUE TREES

Part II
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Inference with Clique Trees
Exploits factorization of the distribution for 
efficient inference, similar to variable elimination

Uses global data structures (cluster graphs)

Deals with a distribution given by (possibly un-
normalized) measure

For Bayesian networks, factors are CPDs
For Markov networks, factors are clique potentials
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Variable Elimination & Clique Trees
Variable elimination

Each step creates a factor πi through multiplication
A variable is then eliminated in πi to generate new factor τi

Process repeated until product contains only query variables

Clique tree inference
Another view of the above computation
General idea: πj is a computational data structure which 
takes “messages” τi generated by other factors πi and 
generates a message τj which is used by another factor πk
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Cluster Graph
Data structure providing flowchart of the factor 
manipulation process

A cluster graph K for factors F is an undirected graph
Nodes are associated with a subset of variables Ci⊆U
The graph is family preserving: each factor φ∈F is 
associated with one node Ci such that Scope[φ]⊆Ci

Each edge Ci–Cj is associated with a sepset Si,j = Ci ∩ Cj

Key: variable elimination defines a cluster graph
Cluster Ci for each factor πi used in the computation
Draw edge Ci–Cj if the factor generated from πi is used in 
the computation of πj

12
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Simple Example
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X1,X2 X2,X3

Cluster graph

C1 = {X1,X2}

C2 = {X2,X3}

S1,2= {X2}

X2

P(X1)
P(X2|X1) P(X3|X2)

family preservation?

A More Complex Example

Goal: P(J), Eliminate: C,D,I,H,G,S,L
C:
D:
I:
H:
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S:
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Properties of Cluster Graphs
Cluster graphs are trees

In VE, each intermediate factor πi is used only once 
Hence, each cluster “passes” an edge (message τi) to exactly 
one other cluster

Cluster graphs obey the running intersection property
If X∈Ci and X∈Cj then X is in each cluster in the (unique) path 
between Ci and Cj

C,D G,I,D
D

G,S,I

G,J,S,L J,S,L

H,G,J

J,L

G,I

G,S

G,J

J,LJ,S,LVerify:

Tree and family preserving

Running intersection property
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Running Intersection Property
Theorem: If T is a cluster tree induced by VE over factors 
F, then T obeys the running intersection property
Proof:

Let C and C’ be two clusters that contain X
Let CX be the cluster where X is eliminated

X must be present on each cluster on C to CX path
Computation at CX must be after computation at C 
X is in C by assumption and since X is not eliminated in C, then X is in the 
factor generated by C
By definition, C’s neighbor multiplies factor generated by C and thus 
(multiplies X and) has X in its scope
By induction for all other nodes on the path

X appears in all clusters between C and CX

16
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Clique Tree
A cluster graph over factors F that satisfies the 
running intersection property is called a clique tree

Clusters Ci in a clique tree are also called cliques

We saw, variable elimination clique tree
Now we will see clique tree variable elimination

Clique tree advantage: data structure for caching 
computations allowing multiple VE runs to be 
performed more efficiently than separate VE runs

17

We begin with an example and 
then describe the general 
algorithm …
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Clique Tree Inference
Goal: Compute P(J) C

D I

SG

L

JH

Verify:

Tree and family preserving

Running intersection property

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)

1 2 3 45
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Clique Tree Inference
Goal: Compute P(J) – define root clique Cr=C5

Set initial factors (CPDs) at each cluster as products πi
0

C1: Eliminate C, sending a message δ1 2(D) to C2
C2: Eliminate D, sending δ2 3(G,I) to C3
C3: Eliminate I, sending δ3 5(G,S) to C5
C4: Eliminate H, sending δ4 5(G,J) to C5
C5: Obtain P(J) by summing out G,S,L from π0(C5)δ3 5δ4 5
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Clique Tree Inference
Goal: Compute P(J) – define root clique Cr=C4

Set initial factors (CPDs) at each cluster as products πi
0

C1: Eliminate C, sending a message δ1 2(D) to C2
C2: Eliminate D, sending δ2 3(G,I) to C3
C3: Eliminate I, sending δ3 5(G,S) to C5
C5: Eliminate S,L, sending δ5 4(G,J) to C4
C4: Obtain P(J) by summing out H,G from π0(C4)δ5 4
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C,D G,I,D
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G,S,I G,J,S,L H,G,J
G,I G,S G,J

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)

1 2 3 45
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Clique Tree Inference
C

D I

SG

L

JH

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J1 2 3 45

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)
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C5 as the root

C4 as the root
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Legal ordering

The only constraint is that a clique gets all of its incoming 
messages from its downstream neighbors before it sends 
its outgoing message toward its upstream neighbor.

We say that Ci is ready to transmit to a neighbor Cj when Ci has 
messages from all of its neighbors except for Cj.

Example
Root C6

Legal ordering I: 1,2,3,4,5,6
Legal ordering II: 2,5,1,3,4,6
Illegal ordering: 3,4,1,2,5,6

C1 C4

C3

C2

C5C6

23

Here is the general algorithm …

24
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Clique Tree Message Passing
Let T be a clique tree and C1,...Ck its cliques

Multiply factors (CPDs) assigned to each clique, resulting in initial 
potentials as each factor is assigned to some clique α(φ):

and 

Define Cr as the root clique
If our goal is to compute P(J), any clique containing J can be Cr

Use the clique-tree data structure to pass messages between 
neighboring cliques, sending all messages toward Cr 

Start from tree leaves and move inward

Let pr(i) be the upstream neighbor of i (on the path to Cr)
Each Ci performs a computation that sends message δi to Cpr(i)

Multiply all incoming messages from downstream neighbors with the initial clique 
potential resulting in a factor whose scope is the clique
Sum out all variables except those in the sepset Ci—Cpr(i)
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Clique Tree Message Passing
Let T be a clique tree and C1,...Ck its cliques

Multiply factors (CPDs) assigned to each clique, resulting in initial 
potentials as each factor is assigned to some clique α(φ):

and 

Define Cr as the root clique
If our goal is to compute P(J), any cluster containing J can be Cr

Use the clique-tree data structure to pass messages between 
neighboring cliques, sending all messages toward Cr 

Start from tree leaves and move inward

Let pr(i) be the upstream neighbor of i (on the path to Cr)
Each Ci performs a computation that sends message δi to Cpr(i)

When the root clique Cr has received all messages, it multiplies them 
with its own initial potential, resulting in a factor called the belief 

representing
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Clique Tree Inference Correctness
Theorem 

Let Cr be the root clique in a clique tree 
If πr is computed as above, then

Algorithm applies to Bayesian and Markov networks
For Bayesian network G, if F consists of the CPDs reduced 
with some evidence e then πr[Cr] = PG(Cr,e)

Probability obtained by normalizing the factor over Cr to sum to 1

For Markov network H, if F consists of a set of clique 
potentials, then πr[Cr] = PH(Cr)

Probability obtained by normalizing the factor over Cr to sum to 1
Partition function obtained by summing up all entries in πr[Cr] 
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Clique Tree Calibration
Assume we want to compute marginal distributions 
over n variables: P(X1),…,P(Xn)

With variable elimination, we perform n separate VE runs
With clique trees, we can do this much more efficiently

Idea 1: since marginal over a variable can be computed from any 
root clique that includes it, perform k clique tree runs (k=# cliques)
Idea 2: Can do much better! How?
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Clique Tree Calibration
Observation: a message from Ci to Cj is unique

Consider two neighboring cliques Ci and Cj
If root Cr is on Cj side, Ci sends Cj a message
Message does not depend on specific Cr (we only need Cr to be on 
the Cj side for Ci to send a message to Cj)
Message from Ci to Cj will always be the same, regardless of what 
the query variables are.
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C5 as the root

C4 as the root
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Clique Tree Calibration
Observation: a message from Ci to Cj is unique

Consider two neighboring cliques Ci and Cj
If root Cr is on Cj side, Ci sends Cj a message
Message does not depend on specific Cr (we only need Cr to be on 
the Cj side for Ci to send a message to Cj)
Message from Ci to Cj will always be the same, regardless of what 
the query variables are.

Each edge has two messages associated with it
One message for each direction of the edge
There are only 2(k-1) messages to compute
Can then readily compute the marginal probability over each variable

Compute 2(k-1) messages by
Pick any node as the root
Upward pass: send messages to the root

Terminate when root received all messages
Downward pass: send messages to root children

Terminate when all leaves received messages
30
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Clique Tree Calibration: Example
Root: C5 (first downward pass) C

D I

SG

L

JH

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J

1 2 3 45

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)
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Clique Tree Calibration: Example
Root: C5 (second downward pass) C

D I

SG

L

JH

C,D G,I,D
D

G,S,I G,J,S,L H,G,J
G,I G,S G,J

1 2 3 45

P(C)
P(D|C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)
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Clique Tree Calibration
Theorem 

“Belief” πi is computed for each clique i as above:

Important: avoid double-counting!
Each node i computes the message to its neighbor j using its initial 
potentials π0

i and not its updated potential (“belief”) πi, since πi
integrates information from Cj which will be counted twice
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