Readings: K&F 9.5, 10.1, 10.2, 10.3 (10.4)

Exact Inference Algorithms: Conditioning, Clique Trees

Lecture 7 – Apr 18, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

University of Washington, Seattle

Announcement

- Problem Set #2 is ready.
 - Check course website or pick it up.
 - 7 Questions. Hard. Please start working on it today.
 - Discussion OK! Check collaboration policy.

CSE 515 – Statistical Methods – Spring 2011

Variable Elimination Algorithm

■ Goal: $P(\hat{Q}) \rightarrow \text{guery variable(s)}$ can be anything

$$\begin{split} P(J) &= \sum_{L,S,G,H,I,D,C} P(C,D,I,H,G,S,L) \\ &= \sum_{L,S,G,H,I,D,C} \phi_{I}(J,L,S)\phi_{L}(L,G)\phi_{S}(S,I)\phi_{G}(G,I,D) \\ & \phi_{H}(H,G,J)\phi_{I}(I)\phi_{D}(C,D)\phi_{C}(C) \end{split}$$

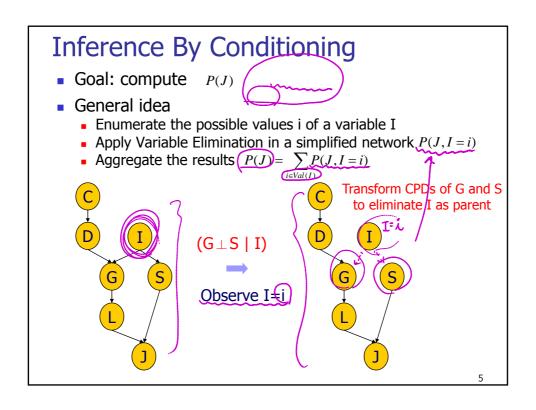
- Eliminate ordering: C,D,I,H,G,S,L ←
- Compute:

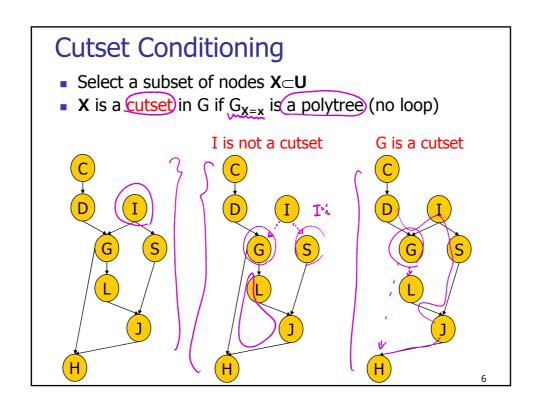
$$\begin{cases}
P(J) = \sum_{L,S} \phi_I(J, L, S) \sum_{G} \phi_L(L, G) \sum_{H} \phi_H(H, G, J) \sum_{I} \phi_I(I) \phi_S(S, I) \sum_{D} \phi_G(G, I, D) \underbrace{\sum_{G} \phi_D(C, D) \phi_C(C)}_{G}
\end{cases}$$

- Computational complexity:
 - $Q(n \max_i |Val(X_i)|)$, where n is the number of variables

3

Part I EXACT INFERENCE: CONDITIONING





Cutset Conditioning

- Select a subset of nodes X⊂U
- X is a cutset in G if G_{X=x} is a polytree
- Define the conditional Bayesian network G_{x=x}
 - G_{X=x} has the same variables as G
 - G_{X=x} has the same structure as G except that all outgoing edges of nodes in X are deleted, and CPDs of nodes in which edges were deleted are updated to

$$P_{G_{X \to X}}(Y \mid Pa(Y)) - (X) = P_{F}(Y \mid Pa(Y), X = x)$$

- Compute original P(Y) query by
 - Exponential in cutset $P_G(Y) =$

 $(Y) = \sum_{x \in Val(X)} P_{G_{X=x}}(X = x, Y)$

7

Computational Complexity

Variable elimination

$$P(J) = \sum_{C} \sum_{D} \sum_{I} \sum_{S} \sum_{G} \sum_{L} \sum_{H} P(C, D, I, S, G, L, H, J) \quad (*)$$

$$= \sum_{L} \sum_{S} P(J \mid L, S) \sum_{G} P(L \mid G) \sum_{H} P(H \mid G, J) \sum_{I} P(I) P(S \mid I) \sum_{D} P(G \mid D, I) \sum_{C} P(C) P(D \mid C)$$

- Conditioning (U=Q)
 - Reordering the expression (*) slightly, we have that:

$$P(J) \underbrace{\sum_{i} \sum_{G} \sum_{D} \sum_{D} \sum_{I} \sum_{D} \sum_{H} P(C, D, I, S, G = g, L, H, J)}_{\text{VE}}$$

- In general, both algorithms are performing the same set of basic operations (sums and products).
- Any advantages?
 - Memory gain ← //
 - Forms the basis for a useful approximate inference algorithms (later)

Part II EXACT INFERENCE: CLIQUE TREES

9

Inference with Clique Trees

- Exploits factorization of the distribution for efficient inference, similar to variable elimination
- Uses global data structures (cluster graphs)
- Deals with a distribution given by (possibly unnormalized) measure

 $P_F(U) = \prod_{\phi' \in F} \phi'$

- For Bayesian networks, factors are CPDs
- For Markov networks, factors are clique potentials

Variable Elimination & Clique Trees

- Variable elimination
 - Each step creates a factor π_i through multiplication
 - A variable is then eliminated in π_i to generate new factor τ_i
 - Process repeated until product contains only query variables

 $P(J) = \sum_{L} \sum_{S} P(J \mid L, S) \sum_{G} P(L \mid G) \sum_{H} P(H \mid G, J) \sum_{I} P(I) P(S \mid I) \sum_{G} P(G \mid D, I) \sum_{G} P(C) P(D \mid C)$

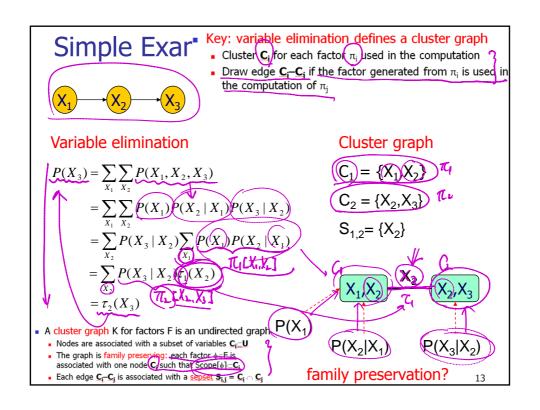
- Clique tree inference
 - Another view of the above computation
 - General idea: π_j is a computational data structure which takes "messages" τ_j generated by other factors π_j and generates a message τ_i which is used by another factor π_k

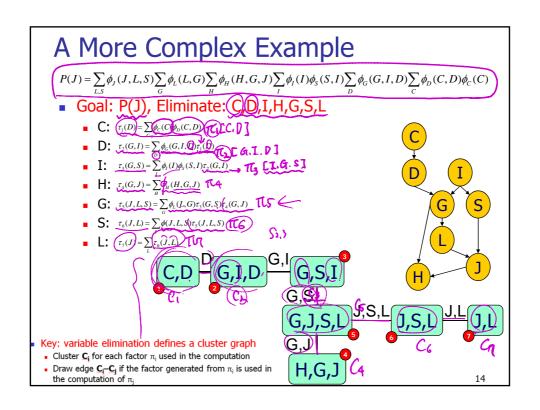
1

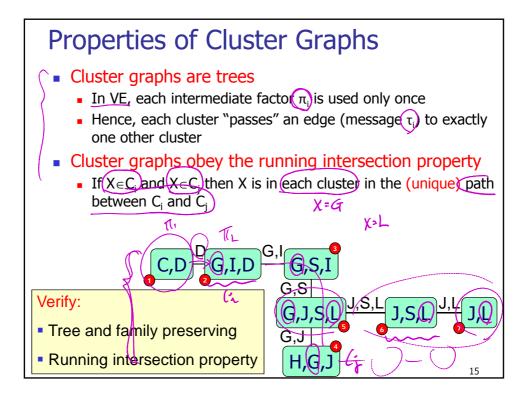
Cluster Graph

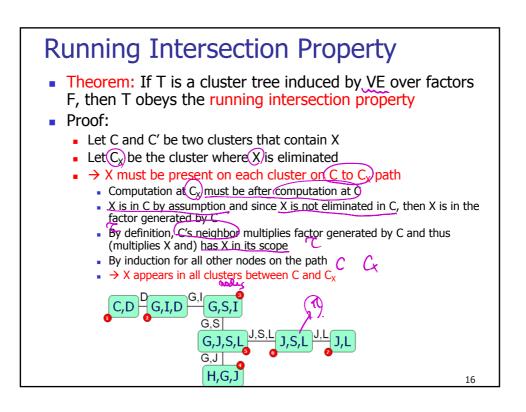
- Data structure providing flowchart of the factor manipulation process
- A cluster graph K for factors F is an undirected graph
 - Nodes are associated with a subset of variables C; U

 - Each edge C_i−C_i s associated with a sepset S_{i,i} = C_i ∩ C_i
- Key: variable elimination defines a cluster graph
 - Cluster (\mathbf{C}_i) for each factor (π_i) used in the computation
 - Draw edge $C_i C_j$ if the factor generated from π is used in the computation of π_i









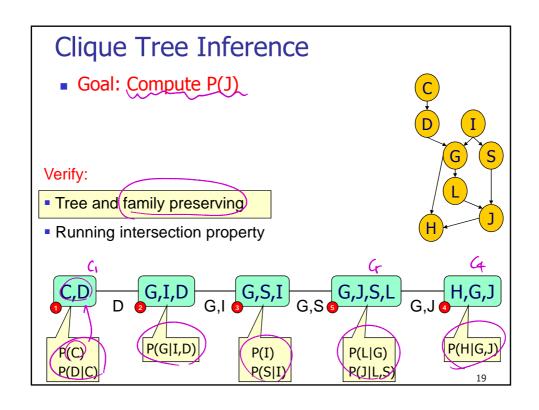
Clique Tree

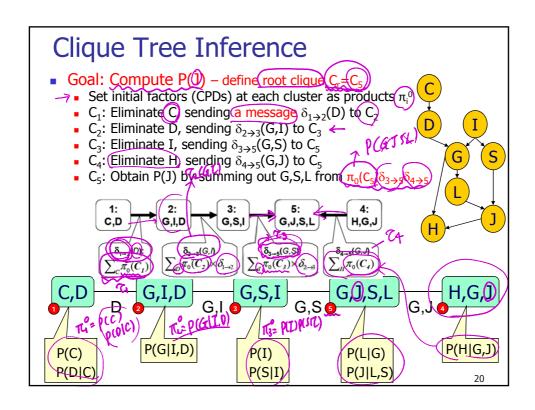
- A cluster graph over factors F that satisfies the running intersection property is called a clique tree
- Clusters C in a clique tree are also called cliques
- We saw, variable elimination → clique tree
- Now we will see clique tree → variable elimination
- Clique tree advantage: data structure for caching computations allowing multiple VE runs to be performed more efficiently than separate VE runs

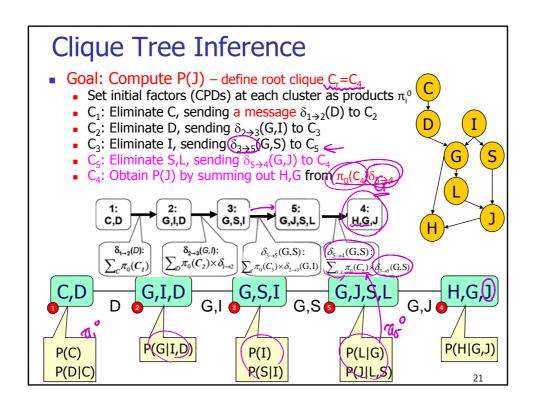
1

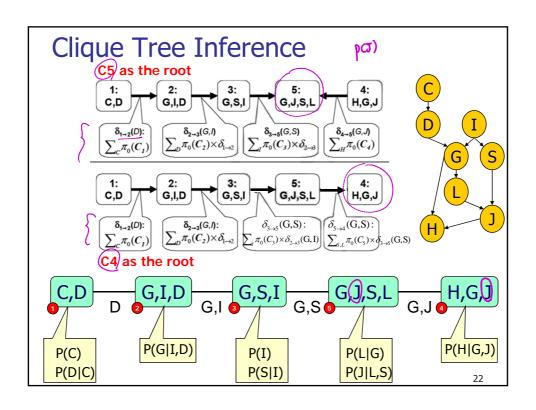
We begin with an example and then describe the general algorithm ...

.8









Legal ordering

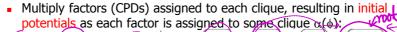
- The only constraint is that a clique gets all of its incoming messages from its downstream neighbors before it sends its outgoing message toward its upstream neighbor.
 - We say that C_i is ready to transmit to a neighbor C_i when C_i has messages from all of its neighbors except for C_i
- Example
 - Root C₆
 - Legal ordering I: 1,2,3,4,5,6
 - Legal ordering II: 2,5,1,3,4,6
 - Illegal ordering: 3,4,1,2,5,6

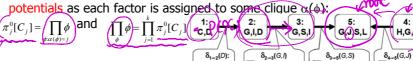
23

Here is the general algorithm ...

Clique Tree Message Passing

Let be a clique tree and C₁,...C_k its cliques





 $\sum_{C} \pi_0(C_I)$

 $_{D}\pi_{0}(C_{2})\times\delta_{1}$

 $\pi_0(C_4)$

δ_{4→5}(G,J)

- Define C_r as the root clique
 - If our goal is to compute P(J), any clique containing J can be C_r
- Use the clique-tree data structure to pass messages between neighboring cliques, sending all messages toward C_r
 - Start from tree leaves and move inward
- Let $(p_r(i))$ be the upstream neighbor of i (on the path to C_r) $p_r(i)$
- Each C performs a computation that sends message δ_i to $C_{p,(i)}$
 - Multiply all incoming messages from downstream neighbors with the initial clique potential resulting in a factor whose scope is the clique

Sum dut all variables except those in the sepset $C_i - C_{p_r(i)} \leftarrow VL$.

Clique Tree Message Passing

- Let T be a clique tree and C₁,...C_k its cliques
 - Multiply factors (CPDs) assigned to each clique, resulting in initia potentials as each factor is ass 1: $\pi_j^0[C_j] = \prod_{\phi: \alpha(\phi)=j} \phi$ and $\prod_{\phi} \phi = \prod_{i=1}^k \pi_j^0[C_j]$
 - Define C_r as the root clique
- $\left| \sum_{C} \pi_0(C_1) \right| \left| \sum_{D} \pi_0(C_2) \times \delta_{1 \to 2} \right| \left| \sum_{I} \pi_0(C_3) \times \delta_{2} \right|$ If our goal is to compute P(J), any cluster containing J can be C_r
 - Use the clique-tree data structure to pass messages between neighboring cliques, sending all messages toward C,
 - Start from tree leaves and move inward
 - Let p_r(i) be the upstream neighbor of i (on the path to C_r)
 - Each C_{i} performs a computation that sends message δ_{i} to $C_{p_{\boldsymbol{r}}(i)}$

$$\delta_{i \to j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \pi_i^0[C_i] \prod_{k \in \{\text{neighbors of } i \text{ except for } j\}} \delta_{k \to i}$$

- When the root clique C_r has received all messages, it multiplies them with its own initial potential, resulting in a factor called the belief
 - $(\pi_r[C_r]) = \pi_r^0[C_r] = \sum_{i \to r} \phi_i$ representing $(P(C_r)) = \sum_i \phi_i$

Clique Tree Inference Correctness

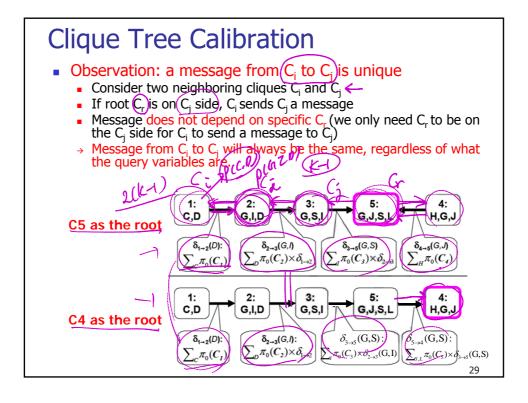
- Theorem
 - Let C_r)be the root clique in a clique tree
 - If π_r is computed as above, then $\pi_r[C_r] = \sum_{(U-C_r)} P_F(U)$
- Algorithm applies to Bayesian and Markov networks
 - For Bayesian network G, if F consists of the CPDs reduced with some evidence e then $\pi_r[C_r] = P_G(C_r,e)$
 - Probability obtained by normalizing the factor over C_r to sum to 1
 - For Markov network H, if F consists of a set of clique potentials, then $\pi_r[C_r] = P_H(C_r)$
 - Probability obtained by normalizing the factor over C, to sum to 1
 - Partition function obtained by summing up all entries in $\pi_r[C_r]$

27

Clique Tree Calibration

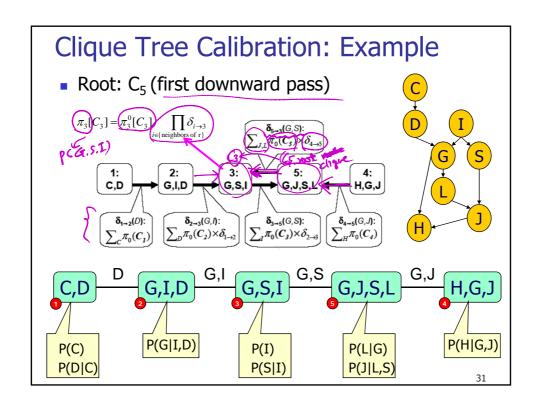
- Assume we want to compute marginal distributions over n variables: $(P(X_1), ..., P(X_n) \leftarrow$
 - With variable elimination, we perform n separate VE runs
 - With clique trees, we can do this much more efficiently

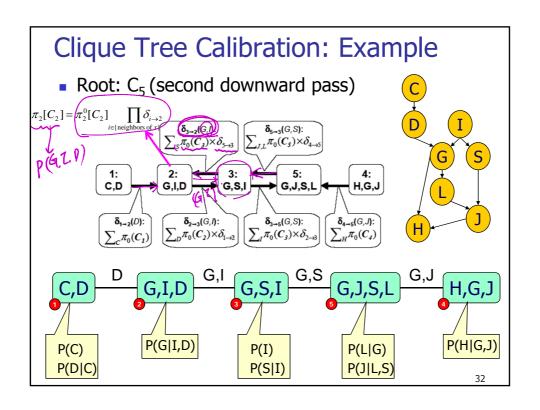
- Idea 1: since marginal over a variable can be computed from any root clique that includes it, perform Riclique tree runs (k=# cliques)
- Idea 2: Can do much better! How?



Clique Tree Calibration

- Observation: a message from C_i to C_i is unique
 - Consider two neighboring cliques C_i and C_i
 - If root C_r is on C_i side, C_i sends C_i a message
 - Message does not depend on specific C_r (we only need C_r to be on the C_j side for C_i to send a message to C_j)
 - → Message from C_i to C_j will always be the same, regardless of what the query variables are.
- Each edge has two messages associated with it
 - One message for each direction of the edge
 - There are only 2(k-1) messages to compute
 - Can then readily compute the marginal probability over each variable
- Compute 2(k-1) messages by
 - Pick any node as the root
 - Upward pass) send messages to the root
 Terminate when root received all messages
 - Downward pass) send messages to root children
 - Terminate when all leaves received messages

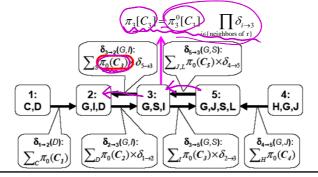




Clique Tree Calibration

- Theorem
 - "Belief" π_i is computed for each clique i as above:

- Important: avoid double-counting!
 - Each node i computes the message to its neighbor j using its initial potentials π^0_i and not its updated potential ("belief") π_i , since π_i integrates information from C_i which will be counted twice



33

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

CSE 515 – Statistical Methods – Spring 2011