Readings: K&F 9.5, 10.1, 10.2, 10.3 (10.4)

Exact Inference Algorithms:
‘ Conditioning, Clique Trees

Lecture 7 — Apr 18, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Announcement

= Problem Set #2 is ready.
= Check course website or pick it up.
= 7 Questions. Hard. Please start working on it today.
= Discussion OK! Check collaboration policy.
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Variable Elimination Algorithm

= Goal: P@) —>(query variable(s)) can be anything G

P(J)= > P(C,D,1,H,G,S,L)

LS.GH,I,D.C

= Z¢J (JerS)¢L(L1G))S'(SVI)¢G(G1I1D) @ e

4. (H,G,3)¢, (1¢ (C, D). (C) o
= Eliminate ordering: C,D,I,H,G,S,L <=

= Compute: 0 a
{P(J)—sz,L,S)2¢L(L.G)Z¢H(H,G,J)z¢.(|)¢S(s,I)Z¢G(G,I,D)

£P)
N

), where n is the number of variables
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Part |

EXACT INFERENCE:
CONDITIONING




Inference By Conditioning

= Goal: compute P(J)

= General idea
»« Enumerate the possible values i of a variable I
= Apply Variable Elimination in a simplified network P(J,1 =i)

= Aggregate the results( PiJD: ; P'(J,I =1)

Geval (D
G Transform CPDs of Gand S
to eliminate/I as parent

(G1S|I)

Observe I£ )

Cutset Conditioning

= Select a subset of nodes XcU

= X is a Cutsedin G if G, i@ polytred (no loop)

I is not a cutset G is a cutset




Cutset Conditioning

= Select a subset of nodes XcU
= X is a cutset in G if Gy_, is a polytree

= Define the conditional Bayesian network G, _,
= Gy, has the same variables as G

= Gy_, has the sg 3 xcept that all outgoing

edges of nodes in X are deleted, an of nodes in

which edges were deleted are updated to

= Compute original PgY) query by
= Exponential in cutset P, (Y)=
(evaixy

Computational Complexity

= Variable elimination
P(J)zZZZZZZZP(C,D,I,J/S,G,L,H,J) (*) ?

=Y > PUILS)Y. P(LIG)Y.P(H|G,3)D P(HP(S|1)> P(G|D, |
; (<

= Conditioning (U=Q)
= Reordering the expression (*) slightly, we have that: B

P(J)é&{ ZZZP(C D,1,5,G=g,L,H J))}

v w‘\ N
7
= In general, bo gorlth are performlng the same set of basmg
operations

= Any advantages?
= Memory gain <~ g
= Forms the basis for a useful approximate inference algorithms (Iaécer)




Part 11

EXACT INFERENCE:
CLIQUE TREES

Inference with Clique Trees

= Exploits factorization of the distribution for
efficient inference, similar to variable elimination

= Uses global data structures (cluster graphs)

= Deals with a distribution given by (possibly un-
normalized) measure

= For Bayesian networks, factors are CPDs
= For Markov networks, factors are clique potentials
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Variable Elimination & Clique Trees

= Variable elimination
» Each step creates a factor m; through multiplication
= A variable is then eliminated in r; to generate new factor t;
= Process repeated until product contains only query variables

P(J)= ZZP(J IL, S)ZP(L|G)ZP(H |G, J)ZP(I)P(S|I)§@ZG|D |jg P(C)P(D|C)
TCJ-CD]

o

= Clique tree inference o git&.ﬂ
= Another view of the above compm

= General idea: n is @ computational data structure which
takes * messages"@generated by ol;her—factol@_and
generates a message t; which is used by another factor m,

11

Cluster Graph

= Data structure providing flowchart of the factor
manipulation process

= A cluster graph K for factors F is an undirected graph
= Nodes are associa ith a subset of variable@gu

= The graph is{family preserving) each factor ¢<F is

associated with one noduch that coe[¢]cC
= Each edge Ci—C-; Js associated with a sepset Sij

= Key: variable elimination defines a cluster graph
» Cluster\C,/for each facto@used in the computation

= Draw edg if the fac@generated from@ is used in
the computation o@

12




S|m Ie Exa r- Key: var@f eIiminatio@:aﬁnes a cluster graph
p » Cluste or each facto sed in the computation

= Draw edge Ci-G; if LWM
@ @ @ the computation of

Variable elimination Cluster graph

=T ee

1 X5, Xs)

= A cluster graph K for factors F is an undirected grap
= Nodes are associated with a subset of variables C;—U ’g
C

= The graph is family presensgg: gach factor b=F
associated with one nodelCy/such tha

A More Complex Example

WE%(J,L,S)Z¢L(L.G)Z¢H(H,G,J)Z¢.(l)¢s(5,I)Z%(G,I,D)Z¢D(C,D)¢C(C)
= Goal: P(J), Eliminate: I,H,G,S,L

« C: (0)- JECC.OXTICD] ©)

s D: nGNH= ¢G<G,|,@r1(6>@wl.1'9]
rz(G,S)—%@ws(s,l)rg(G,I)_,1(3g}g_’_{l Q o

D LG9)=Y&(HGJ) T4

t 50.LS)-Ta(LE)nG 96 TFE— @ e
Dm0 =2 40,L Y50, LS) TS
—_— o @ S\l“) O

n

B Key: variable elimination defines a cluster graph
= Cluster C; for each factor r; used in the computation

» Draw edge C—C; if the factor generated from m; is used in H G J 64
the computation of I~




Properties of Cluster Graphs

= Cluster graphs are trees
= In VE, each intermediate facto@is used only once

= Hence, each cluster “passes” an edge (messag@ to exactly
one other cluster

= Cluster graphs_gbey the running intersection property
. If(XeC) then X is in in the (unique)(path

X=G
U XL
(o
G,
y C,D~G,I,D ,,ﬁ
Verify: (o

= Tree and faimily preserving

= Running intersection property | | H, Iﬂé};\&ji%j

Running Intersection Property

= Theorem: If T is a cluster tree induced by VE over factors
F, then T obeys the running intersection property

= Proof:
= Let C and C' be two clusters that contain X
. Let@ be the cluster where@)is eliminated

= > X must be present on each cluster o C to Cy)path
» Computation a@must be after€omputation at

= Xis in C by assumption and since X is not eliminated in C, then Xis in the

factor genera

. m multiplies fagl;g generated by C and thus
(multiplies X and) has X in its scope

= By induction for all other nodes on the path C &

= > X appears in all cIust&rs between C and Cy

JC,D]—DLG,I,D]E[G,S,I? /@

G|
(GasLP=dasL) L)
G.J ‘
HG,) 16




Cligue Tree
= Aclustergraph over factors F that satisfies-the
running intersection property is called a
>
- @in a clique tree are also caIIe

= We saw, variable elimination = clique tree
= Now we will see cJigue tree = variable elimination

= Clique tree advantage: data Icture for caching
computations allowing uns to be
performed more efficiently thar@ VE runs

17

We begin with an example and
then describe the general
algorithm ...
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Cliqgue Tree Inference
= Goal: Compute P(J)_ ()

Verify: *9
= Tree and family preservin o
iy preserving i—

= Running intersection property

G, G &
¢D G,ID G,S,1 G,,S,L H,G,]
D G, G,S G,J0——
P(G|L,D) P(1) P(L|G) P(H@
D|C (ST JIL.S) 19

Clique Tree Inference
s Goal: C te PQ) - M@ﬂ"md )
— -oaSetWPDg)egp each cluster as

ucty'm, G
C;: EImnat@ sending(a messagy) 3,,(D) t@

C,: Eliminate D, sending 3,55(G,I)to C; <

s \L

« C;: Eliminate I, sendlng 8355(G,S) to Cs C&’T{

. C4: sending 3455(G,J) to Cs e
= Cg: Obtain P(J) astimming out G,S,L fro 63_)




Clique Tree Inference

= Goal: Compute P(J) - define root clique C,=C,

Set initial factors (CPDs) at each cluster as products r°
Eliminate C, sending a message 8;,(D) to G,
Eliminate D, sending §,5(G,I) to C;

Eliminate I, sending®;56G,S) to Cs «_—

Eliminate S,L, sending 8554(G,J) to C,
Obtain P(J) by summing out H,G fro @@

C:
(O
(O
Cs:
%

P(C)
P(D[C)

P(HIG,J)
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?GI)

Clique Tree Inference

CH as the root

P(G|L,D)

P(LIG)
PQIL,S

P(C)
P(D[C)

P(SIT)

8,.4(G,5) .-,<G 2
¥ A(CXE, | | X, m(C)
G, Sl \ G J S L !g H\GD
5,.,5(G9): [ .,4(G, S)
7Gx, 5G| T 7 (C)x H(G S)

P(HIG,J)
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Legal ordering

= The only constraint is that a clique gets all of its incoming
messages from its downstream neighbors before it sends
its outgoing message toward its upstream neighbor.

= We say that C; is ready to transmi i r C, when C, has
messages from all of its neighbors except fo

s

= Example

= Legal ordering II: 3,4,6—

[WC]' I e « '{CG CS}
= Root C6 @ T \_/

« Legal ordering I AT ;

« llegal ordering: !
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Here is the general algorithm ...
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Cligue Tree Message Passing

. Let@ be a clique tree and C,,...C, its cliques
= Multiply factors (CPDs) assigned to each cllque resulting in initial |

potentials_as each factor iS assigne
(xi1c,1= ¢ a”d Hfr°[C]
o (4)=

= Define C, as the root clique
= If our goal is to compute P(J), any clique containin@ can be C,

= Use the clique-tree data structure to pass messages between
neighboring cliques, sending all messages toward C;

. from\tgqgwi and m?ve inward . ::1,
. Let be the upstream neighbor of i (on the path to C,) {26,
» Each C{performs a computat|on that sends messag @
all |nc with the initial clique
ial

- Eb
“V)% T*\QO‘N

ke{neighbors of i except for j}
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Cligue Tree Message Passing

= Let T be a clique tree and C,,...C, its cliques @ g\
= Multiply factors (CPDs) assigned to each clique, resultifig in initial {_3
potentlals as each factor is ass] ""_"’ ";:“" o e —

7[C)]1= H¢ and H¢ H;;O[C] )

Fa(p)=

= Define C, as the root clique
= If our goal is to compute P(J), any cluster containing J can be C,

= Use the clique-tree data structure to pass messages between

neighboring cliques, sending all messages toward C,

= Start from tree leaves and move inward
Let p,(i) be the upstream neighbor of i (on the path to C,)
= Each G performs a computation that sends message d; to C, ;)
I—)J(SI J) = Z ”iO[Ci] Hék—n

Ci-Si ke{neighbors of i except for j}

. When the root cllque C has received all messages, |t_mu|1[@fl_1gp
'S¢ [ resulting jn-a factor called the helie

epresenting @
S5 U—ZC,];[¢
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Cliqgue Tree Inference Correctness

= Theorem
= Let C be the root clique in a clique
. If@is computed as above, then

= Algorithm applies to Bayesian and Markov networks
= For Bayesian network G, if F consists of the CPDs reduced
with some evidence e then i [C] = P4(C,,e)
= Probability obtained by normalizing the factor over C, to sum to 1

= For Markov network H, if F consists of a set of clique
potentials, then n,[C.] = P4(C)

= Probability obtained by normalizing the factor over C, to sum to 1
= Partition function obtained by summing up all entries in ,[C]
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Cligue Tree Calibration

= Assume we want fo-cempute marginal distributions
over n variables: . P(X,)&E—

= With variable elimination, we perform n separate VE runs

= With clique trees, we can do this much more efficiently

C’l) = Idea 1: since marginal over a variable can be computed from any
C root clique that includes it, perform{k)clique tree runs (k=# cliques)

= Idea 2: Can do much better! How?

28




Cligue Tree Calibration

= Observation: a message fromis unique
= Consider two neigh ring cliques Grand C; <—
= If rootC. )is on 6, Cisends C;a message

= Message does not depend on speC|f|c we only need C, to be on
the C; side for C; to send a message to t

> Message from C to C; wi ays };)73 same, regardless of what
the query variables af LC‘ L‘“

() S e

1: 2: 3: - 5: 4:
by G,S, TL8W,S G

84(G.) 8,-4(6.5) 8-o(G.)
’[ﬂ(('z)x&az ﬂ"ﬂ((‘i)x‘s‘z 3 ZHIO((‘J)

C5 as the root

C4 as the root

Cligue Tree Calibration

» Observation: a message from C; to C; is unique

Consider two neighboring cliques C and C;

= If root C is on C; side, C;sends C;a message

Message does not depend on specific C, (we only need C, to be on
the C; side for C; to send a message to t

Message from C to C; will always be the same, regardless of what
the query variables ate.

= Each edge has@associated with it

= One message f h direction of the edge
= There are onl messages to compute
= Can then readily compute the marginal probability over each variable

N2

e essage

. s. NNWa send messages to root chi gr_en

. Termlnate when all leaves received messages
30




Cligue Tree Calibration: Example
" Root: G (first downward pass) — (g)

P(C) P(G|I,D) P(L|G) P(H|G,J)
P(D|C) P(S|I) P(JIL,S

Cligue Tree Calibration: Example
= Root: C: (second downward pass) G

55_3(6 S):
Z”_ﬂ'o(cs)x‘sa-»

GISL Ho J ‘
8,651 | [ _81eslG.
P

Y 7 (C)%8, 2(C))

P(C) P(G|I,D) P(L|G) P(H|G,J)
P(D|C) P(S|I) P(JIL,S




Cligue Tree Calibration

= Theorem e
= "Belief” m;is computed fq/ each clique i as above:

(e Ty s
e{neighbors of i} -G

= Important: avoid double-counting! <«—
= Each node i computes the message to its neighbor j using its initial
potentials n% and not its updated potential (“belief”) m;, since
integrates information from C; which will be counted twice

ui)
8,.4(G)): 8,.5(G,9): 8,-5(G,J):
3 T(C)XE | | D7 (C)% 8, ZHﬂ},(C‘,J 4
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