Readings: K&F 10.3, 10.4, 17.1, 17.2

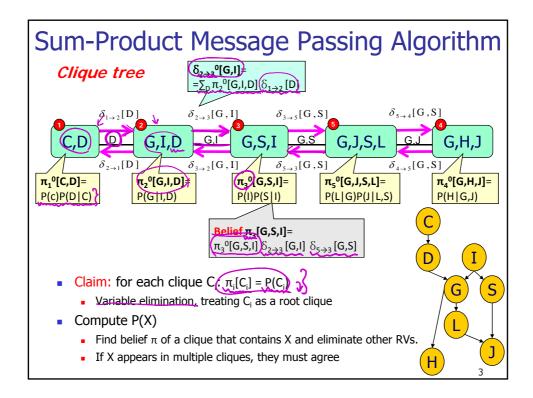
Message Passing Algorithms for Exact Inference & Parameter Learning

Lecture 8 – Apr 20, 2011 CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee

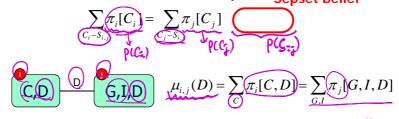
University of Washington, Seattle

Part I TWO MESSAGE PASSING ALGORITHMS



Clique Tree Calibration

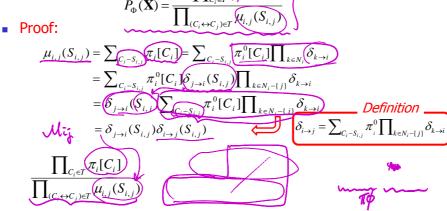
A clique tree with potentials π_i[C_i] is said to be calibrated if for all neighboring cliques C_i and C_j:
 "Sepset belief"



- Key advantage the clique tree inference algorithm
 - Computes marginal distributions for all variables P(X₁),...P(X_D) using only twice the computation of the upward pass in the same tree.

Calibrated Clique Tree as a Distribution

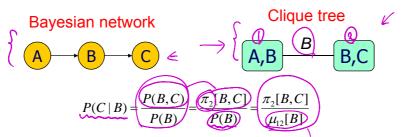
• At convergence of the clique tree algorithm, we have that:



• Clique tree invariant: The clique beliefs π 's and sepset beliefs μ 's provide a re-parameterization of the joint distribution, one that directly reveals the marginal distributions.

Distribution of Calibrated Tree

For calibrated tree



Joint distribution can thus be written as

$$P(A,B,C) = P(A,B)P(C \mid B) = \frac{\pi_1[A,B]\pi_2[B,C]}{\mu_2[B]} \leftarrow \frac{Clique tree invariant}{\prod_{C \in C} \pi_i}$$

An alternative approach for message passing in clique trees?

7

Message Passing: Belief Propagation

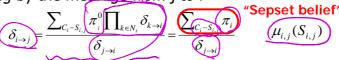
- Recall the clique tree calibration algorithm
 - Upon calibration the final potential (belief) at i is:

$$\pi_i = \pi_i^0 \prod_{k \in N_i} \delta_{k-1}$$

 A message from i to j sums out the non-sepset variables from the product of initial potential and all messages except for the one from j to j

$$\delta_{i \to j} = \sum_{C_i - S_{i,j}} \pi_i^0 \prod_{k \in N_i - \{j\}} \delta_{k \to i,j}$$

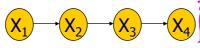
 Can also be viewed as multiplying all messages and dividing by the message from j to i

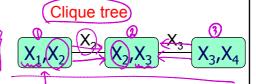


• Forms a basis of an alternative way of computing messages

Message Passing: Belief Propagation

Bayesian network





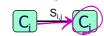
- Root: C₂
- C₁ to C₂ Message: $\delta_{1\to 2}(X_2) = \sum_{X_1} \pi_1^0[X_1, X_2] = \sum_{X_1} P(X_1)P(X_2 \mid X_1)$ C₂ to C₁ Message: $\delta_{2\to 1}(X_2) = \sum_{X_1} \pi_2^0[X_2, X_3] \delta_{3\to 2}(X_3)$
- C_2 to C_1 Message: $\delta_{2\rightarrow 1}(X_2) = \sum_{i=1}^{n} \delta_{i}(X_2)$
 - Sum-product message passing
- Alternatively compute $\pi_2[X_2, X_3] = \delta_{1\rightarrow 2}(X_2)\delta_{3\rightarrow 2}(X_3)\pi_2^0[X_2, X_3]$
- And then: "Sepset belief" μ (X
- → Thus, the two approaches are equivalen

Message Passing: Belief Propagation

- Based on the observation above,
 - Different message passing scheme, belief propagation
 - Each clique C_i maintains its fully updated beliefs π_i

the clique and sepset beliefs – π_i 's and $\mu_{i,i}$'s.

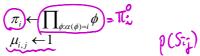
- product of initial clique potentials π_i^0 and messages from neighbors $\delta_{k\to i}$
- Each sepset also maintains its belief $\mu_{i,j}$
 - product of the messages in both direction $\delta_{i\rightarrow j}$ $\delta_{j\rightarrow j}$ The entire message passing process is executed in an equivalent way in terms of
- Basic idea ($\mu_{i,j} = \delta_{i \rightarrow j} \delta_{j \rightarrow i}$)



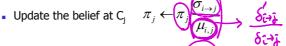
- Each clique C_i initializes the belief π_i as π_i^0 ($= \Pi \phi$) and then updates it by multiplying with message updates received from its neighbors.
- Store at each sepset $S_{i,j}$ the previous sepset belief $\mu_{i,j}$ regardless of the direction of the message passed
- When passing a message from C_i to C_j , divide the new sepset belief $\sigma_{i,j} = \sum_{C_i = S_{i,j}} \pi_i$ by previous $\mu_{i,j}$
- Update the clique belief π_j by multiplying with
- This is called belief update or belief propagation

Message Passing: Belief Propagation

- Initialize the clique tree
 - For each clique C_i set
 - For each edge C_i—C_i set



- While uninformed cliques exist
 - Select C_i—C_i ←
 - Send message from C_i to C_i
 - Marginalize the clique over the sepset (σ_i)



- Update the sepset belief at $C_i C_i$ $\mu_{i,j}$
- Equivalent to the sum-product message passing algorithm?
 - Yes a simple algebraic manipulation, left as PS#2.

11

Clique Tree Invariant

- Belief propagation can be viewed as reparameterizing
 - the joint distribution

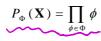
 Upon calibration we showed $P_{\Phi}(\mathbf{X})$
 - How can we prove this holds in belief propagation?
 - Initially this invariant holds since $\prod_{C_i \in \mathcal{T}} \pi_i[C_i] = P_{\Phi}(\mathbf{X})$ $\prod_{C_i \in \mathcal{T}} \mu_{i,j}(S_{i,j}) = \prod_{C_i \in \mathcal{C}} \mu_{i,j}(S_{i,j}) = P_{\Phi}(\mathbf{X})$
 - At each update step invariant is also maintained
 - Message only changes π_i and $\mu_{i,j}$ so most terms remain unchanged
 - We need to show that for new π' , μ' $\left(\frac{\pi'}{\mu'}\right) = \frac{\pi_i}{\mu'}$
 - But this is exactly the message passing step π_i
- → Belief propagation reparameterizes Plat each step

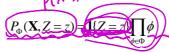
Answering Queries

- Sum out (rrelevant variables from any clique containing X
- Posterior distribution queries on family X,Pa(X)
 - The family preservation property implies that X,Pa(X) are in the same clique.
 - Sum out irrelevant variables from clique containing X,Pa(X)

Introducing evidence Z=z

- Compute posterior of X where X appears in clique with Z
 - Since clique tree is calibrated, multiply clique that contains X and Z with indicator function I(Z=z) and sum out irrelevant variables.
- Compute posterior of X if X does not share a clique with Z
 - Introduce indicator function I(Z=z) into some clique containing Z and propagate messages along path to clique containing X
 - Sum out irrelevant factors from clique coltaning X





P(X (Zoz)

13

So far, we haven't really discussed how to construct clique trees...

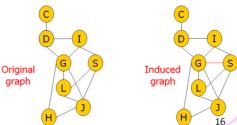
Constructing Clique Trees

- Two basic approaches
 - 1. Based on variable elimination
 - 2. Based on direct graph manipulation
- Using variable elimination
 - The execution of a variable elimination algorithm can be associated with a cluster graph.
 - Create a cluster(C_i)for each factor used during a VE run
 - Create an edge between C_i and C_j when a factor generated by C_i is used directly by C_j (or vice versa)
- → We showed that cluster graph is a tree satisfying the running intersection property and thus it is a legal clique tree

15

Direct Graph Manipulation

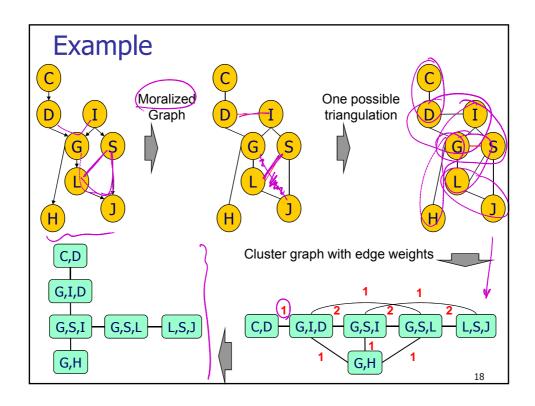
- Goal: construct a tree that is family preserving and obeys the running intersection property
- The induced graph I_D is necessarily a chordal graph. ←
 - The converse holds: any chordal graph can be used as the basis for inference.
 - Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Reminder: The induced graph $I_{F,\alpha}$ over factors F and ordering α :
 - Union of all of the graphs resulting from the different steps of the variable elimination algorithm.
 - (X_i and X) are connected if they appeared in the same factor throughout the VE algorithm using α as the ordering



Constructing Clique Trees

- The induced graph $I_{F,\alpha}$ is necessarily a chordal graph.
 - Any chordal graph can be associated with a clique tree (Theorem 4.12)
- Step I: (Triangulate) the graph to construct a chordal graph H
 - Constructing a chordal graph that subsumes an existing graph H⁰
 - NP-hard to find a minimum triangulation where the largest clique in the resulting chordal graph has minimum size
 - Exact algorithms are too expensive and one typically resorts to heuristic algorithms. (e.g.,node elimination techniques; see K&F 9.4.3.2)
- Step II: Find cliques in H and make each a node in the clique tree
 - Finding maximal cliques is NP-hard
 - Can begin with a family, each member of which is guaranteed to be a clique, and then use a greedy algorithm that adds nodes to the clique until it no longer induces a fully connected subgraph.
- Step III: Construct a tree over the clique nodes

 - We can show that resulting graph obeys running intersection → valid clique tree



Part II PARAMETER LEARNING

19

Learning Introduction

- So far, we assumed that the networks were given
- Where do the networks come from?
 - Knowledge engineering with aid of experts ←
 - Learning: automated construction of networks
 - Learn by examples or instances <

Learning Introduction

- Output: Bayesian network
- drin My N vavs

Measures of success

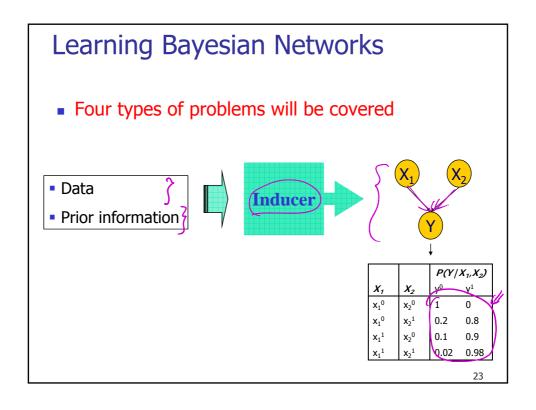
- How close is the learned network to the original distribution
 - Use distance measures between distributions
 - Often hard because we do not have the true underlying distribution
 - Instead, evaluate performance by how well the network predicts new unseen examples ("test data")
- Classification accuracy ←
- How close is the structure of the network to the true one?
 - Use distance metric between structures
 - Hard because we do not know the true structure
 - Instead, ask whether independencies learned hold in test data

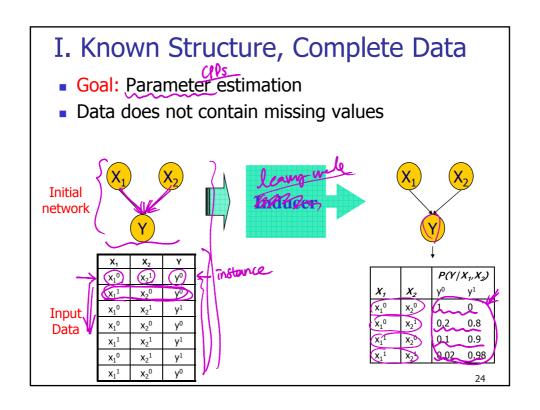
21

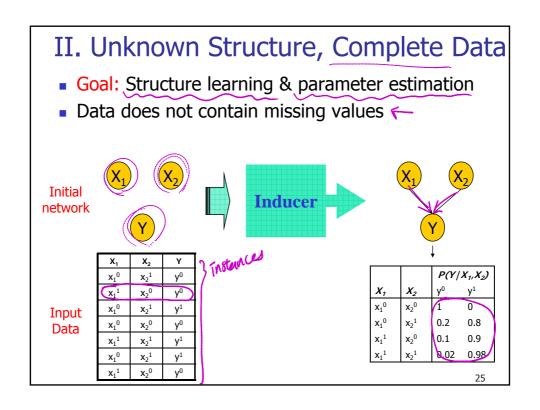
Prior Knowledge

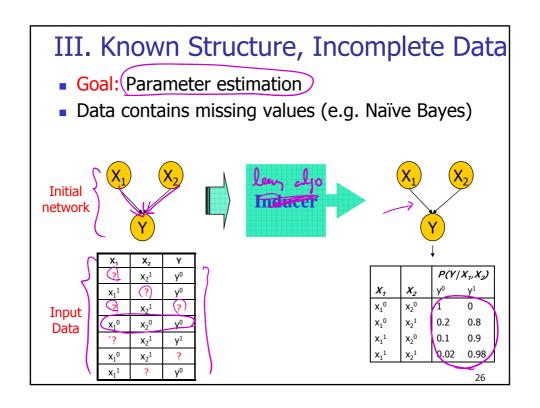
- Prespecified structure;
 - Learn only CPDs
- Prespecified variables
 - Learn network structure and CPDs
- Hidden variables
 - Learn hidden variables, structure, and CPDs
- Complete/incomplete data ?
 - Missing data
 - Unobserved variables

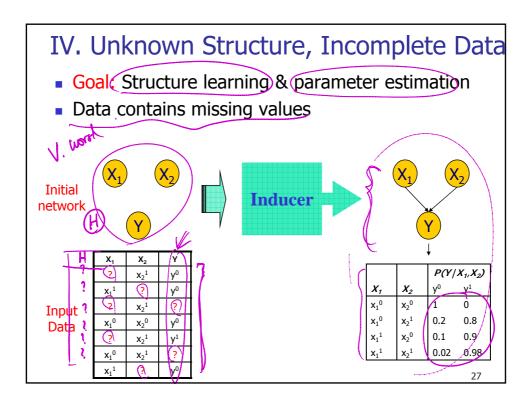
del .. dem]







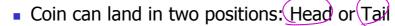




Parameter Estimation

- Input
 - Network structure
 - Choice of parametric family for each CPD P(X_i|Pa(X_i))
- Goal: Learn CPD parameters <
- Two main approaches (MLE)
 - Maximum likelihood estimation §
 - Bayesian approaches

Biased Coin Toss Example



- Estimation task
 - Given toss examples x[1], x[m] estimate $P(X=h) = \theta$ and $P(X=t) = 1-\theta$
 - Denote by P(H) and P(T) to mean P(X=h) and P(X=t), respectively.
- Assumption: i.i.d samples
 - Tosses are controlled by an (unknown) parameter θ
 - Tosses are sampled from the same distribution ←
 - Tosses are independent of each other

20

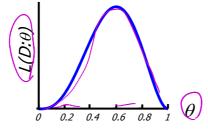
Biased Coin Toss Example

■ Goal: find e=[0,1] that predicts the data well

× pux=N = 0

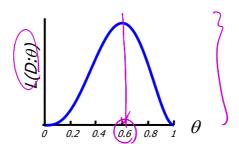
- "Predicts the data well" = (likelihood) of the data given θ $L(Q: \theta) = P(Q|\theta) = \prod_{i=1}^{m} P(x[i]) x[i], ..., x[i-1], \theta) = \prod_{i=1}^{m} P(x[i]|\theta)$
- Example: probability of sequence H.T.T.H.H

 $L(H,T,T,H,H):\theta = P(H \mid \theta)P(T \mid \theta)P(T \mid \theta)P(H \mid \theta)P(H \mid \theta) = \theta^{3}(1-\theta)^{2}$



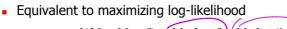
Maximum Likelihood Estimator

- Parameter θ that maximizes $L(D:\theta) = P(D|\theta)$
 - In our example, $\theta = 0.6$ maximizes the sequence H,T,T,H,HQue 20, 6



Maximum Likelihood Estimator

- General case
 - Observations: (M_H heads and (M_T tails D
 - Find θ maximizing likelihood $(L(M_H, M_T): \theta)$



 $l(M_H, M_T : \theta) = M_H \log \theta + M_T \log(1 - \theta)$

 Differentiating the log-likelihood and solving for hwe get that the maximum likelihood parameter is:

Acknowledgement

 These lecture notes were generated based on the slides from Prof Eran Segal.

CSE 515 – Statistical Methods – Spring 2011