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Lecture 8 – Apr 20, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Message Passing Algorithms 
for Exact Inference 
& Parameter Learning

Readings: K&F 10.3, 10.4, 17.1, 17.2

TWO MESSAGE PASSING 
ALGORITHMS

Part I
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Sum-Product Message Passing Algorithm

Claim: for each clique Ci: πi[Ci] = P(Ci)
Variable elimination, treating Ci as a root clique 

Compute P(X)
Find belief π of a clique that contains X and eliminate other RVs.

If X appears in multiple cliques, they must agree
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π4
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δ2→3
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Belief π3[G,S,I]=
π3

0[G,S,I] δ2→3 [G,I] δ5→3 [G,S]

Clique Tree Calibration
A clique tree with potentials πi[Ci] is said to be calibrated if 
for all neighboring cliques Ci and Cj:

Key advantage the clique tree inference algorithm
Computes marginal distributions for all variables P(X1),…,P(Xn) using 
only twice the computation of the upward pass in the same tree.
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Calibrated Clique Tree as a Distribution
At convergence of the clique tree algorithm, we have that:

Proof: 

Clique tree invariant: The clique beliefs π’s and sepset beliefs µ’s
provide a re-parameterization of the joint distribution, one that 
directly reveals the marginal distributions.
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Distribution of Calibrated Tree
For calibrated tree

Joint distribution can thus be written as
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Bayesian network Clique tree
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An alternative approach for 
message passing in clique trees?
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Message Passing: Belief Propagation
Recall the clique tree calibration algorithm

Upon calibration the final potential (belief) at i is:

A message from i to j sums out the non-sepset
variables from the product of initial potential and all 
messages except for the one from j to i

Can also be viewed as multiplying all messages and 
dividing by the message from j to i

Forms a basis of an alternative way of computing messages
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Message Passing: Belief Propagation

Root: C2
C1 to C2 Message:
C2 to C1 Message:

Sum-product message passing

Alternatively compute 
And then: 

Thus, the two approaches are equivalent
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Bayesian network Clique tree
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Message Passing: Belief Propagation
Based on the observation above, 

Different message passing scheme, belief propagation
Each clique Ci maintains its fully updated beliefs πi

product of initial clique potentials πi
0 and messages from neighbors δk→i

Each sepset also maintains its belief µi,j
product of the messages in both direction δi→j, δj→i

The entire message passing process is executed in an equivalent way in terms of 
the clique and sepset beliefs – πi’s and µi,j’s.

Basic idea (µi,j=δi→jδj→i)
Each clique C i initializes the belief πi as πi

0 (=∏φ) and then updates it by 
multiplying with message updates received from its neighbors.
Store at each sepset Si,j the previous sepset belief µi,j regardless of the direction 
of the message passed
When passing a message from Ci to Cj, divide the new sepset belief σi,j
by previous µi,j

Update the clique belief πj  by multiplying with

This is called belief update or belief propagation
10
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Message Passing: Belief Propagation
Initialize the clique tree

For each clique Ci set 

For each edge Ci—Cj set 

While uninformed cliques exist
Select Ci—Cj

Send message from Ci to Cj

Marginalize the clique over the sepset

Update the belief at Cj

Update the sepset belief at Ci–Cj

Equivalent to the sum-product message passing algorithm? 
Yes – a simple algebraic manipulation, left as PS#2.
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Clique Tree Invariant
Belief propagation can be viewed as reparameterizing
the joint distribution

Upon calibration we showed

How can we prove this holds in belief propagation?

Initially this invariant holds since 

At each update step invariant is also maintained
Message only changes πi and µi,j so most terms remain unchanged
We need to show that for new π’, µ’

But this is exactly the message passing step

Belief propagation reparameterizes P at each step
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Answering Queries
Posterior distribution queries on variable X

Sum out irrelevant variables from any clique containing X

Posterior distribution queries on family X,Pa(X)
The family preservation property implies that X,Pa(X) are in the 
same clique.
Sum out irrelevant variables from clique containing X,Pa(X)

Introducing evidence Z=z, 
Compute posterior of X where X appears in clique with Z

Since clique tree is calibrated, multiply clique that contains X and Z with 
indicator function I(Z=z) and sum out irrelevant variables.

Compute posterior of X if X does not share a clique with Z
Introduce indicator function I(Z=z) into some clique containing Z and 
propagate messages along path to clique containing X
Sum out irrelevant factors from clique containing X
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So far, we haven’t really discussed 
how to construct clique trees…
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Constructing Clique Trees
Two basic approaches

1. Based on variable elimination
2. Based on direct graph manipulation

Using variable elimination
The execution of a variable elimination algorithm can be 
associated with a cluster graph.

Create a cluster Ci for each factor used during a VE run
Create an edge between Ci and Cj when a factor generated by 
Ci is used directly by Cj (or vice versa)

We showed that cluster graph is a tree satisfying the 
running intersection property and thus it is a legal clique tree

15

Direct Graph Manipulation
Goal: construct a tree that is family preserving and obeys the 
running intersection property
The induced graph IF,α is necessarily a chordal graph.

The converse holds: any chordal graph can be used as the basis for 
inference.
Any chordal graph can be associated with a clique tree (Theorem 4.12)

Reminder: The induced graph IF,α over factors F and ordering α:
Union of all of the graphs resulting from the different steps of the variable elimination 
algorithm.
Xi and Xj are connected if they appeared in the same factor throughout the VE 
algorithm using α as the ordering

16
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Constructing Clique Trees
The induced graph IF,α is necessarily a chordal graph.

Any chordal graph can be associated with a clique tree (Theorem 4.12)

Step I: Triangulate the graph to construct a chordal graph H
Constructing a chordal graph that subsumes an existing graph H0

NP-hard to find a minimum triangulation where the largest clique in the resulting 
chordal graph has minimum size 
Exact algorithms are too expensive and one typically resorts to heuristic 
algorithms. (e.g. node elimination techniques; see K&F 9.4.3.2)

Step II: Find cliques in H and make each a node in the clique tree
Finding maximal cliques is NP-hard
Can begin with a family, each member of which is guaranteed to be a clique, 
and then use a greedy algorithm that adds nodes to the clique until it no longer 
induces a fully connected subgraph.

Step III: Construct a tree over the clique nodes
Use maximum spanning tree algorithm on an undirected graph whose nodes are 
cliques selected above and edge weight is |Ci∩Cj|
We can show that resulting graph obeys running intersection → valid clique tree
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PARAMETER LEARNING
Part II

19

Learning Introduction
So far, we assumed that the networks were given

Where do the networks come from?
Knowledge engineering with aid of experts
Learning: automated construction of networks

Learn by examples or instances

20
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Learning Introduction

Input: dataset of instances D={d[1],...d[m]}
Output: Bayesian network 

Measures of success
How close is the learned network to the original distribution

Use distance measures between distributions
Often hard because we do not have the true underlying distribution
Instead, evaluate performance by how well the network predicts new 
unseen examples (“test data”)

Classification accuracy
How close is the structure of the network to the true one?

Use distance metric between structures
Hard because we do not know the true structure
Instead, ask whether independencies learned hold in test data

21

Prior Knowledge
Prespecified structure

Learn only CPDs

Prespecified variables
Learn network structure and CPDs

Hidden variables
Learn hidden variables, structure, and CPDs

Complete/incomplete data
Missing data
Unobserved variables

22
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Learning Bayesian Networks

Four types of problems will be covered
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II. Unknown Structure, Complete Data
Goal: Structure learning & parameter estimation
Data does not contain missing values

P(Y|X1,X2)
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III. Known Structure, Incomplete Data
Goal: Parameter estimation
Data contains missing values (e.g. Naïve Bayes)
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IV. Unknown Structure, Incomplete Data
Goal: Structure learning & parameter estimation
Data contains missing values
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Parameter Estimation
Input

Network structure
Choice of parametric family for each CPD P(Xi|Pa(Xi))

Goal: Learn CPD parameters

Two main approaches
Maximum likelihood estimation
Bayesian approaches

28
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Biased Coin Toss Example
Coin can land in two positions: Head or Tail

Estimation task
Given toss examples x[1],...x[m] estimate
P(X=h)= θ and P(X=t)= 1-θ
Denote by P(H) and P(T) to mean P(X=h) and P(X=t), 
respectively.

Assumption: i.i.d samples
Tosses are controlled by an (unknown) parameter θ
Tosses are sampled from the same distribution
Tosses are independent of each other
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X

Biased Coin Toss Example
Goal: find θ∈[0,1] that predicts the data well

“Predicts the data well” = likelihood of the data given θ

Example: probability of sequence H,T,T,H,H
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Maximum Likelihood Estimator
Parameter θ that maximizes L(D:θ)

In our example, θ=0.6 maximizes the sequence 
H,T,T,H,H

0 0.2 0.4 0.6 0.8 1 θ

L(
D

:θ
)
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Maximum Likelihood Estimator
General case

Observations: MH heads and MT tails
Find θ maximizing likelihood

Equivalent to maximizing log-likelihood 

Differentiating the log-likelihood and solving for θ we get that the 
maximum likelihood parameter is:
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