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Sum-Product Message Passing Algorithm

Clique tree
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= Claim: for each clique C 38 e
= Variable elimination, treatlng C as a root clique

= Compute P(X)
= Find belief r of a clique that contains X and eliminate other RVs

= If X appears in multiple cliques, they must agree
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Cligue Tree Calibration

= A clique tree with potentials m,[C] is said to be calibrated if
for all nelghborlng cliques C;and G “Sepset belief”
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= Key advantage the clique tree inference algorithm /

= Computes marginal distributions for all variable,. using

only twice the computation of the upward pass in the same tree.




Calibrated Clique Tree as a Distribution
= At convergence of the clique tree algorithm, we have that:
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= Clique tree invariant: The cI|que bellefs n's and sepset beliefs p’s

provide a r j int distribution, one that
directly reveals the marginal distributions. s

Distribution of Calibrated Tree

= For calibrated tree

Bayesian network Clique tree
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An alternative approach for
message passing in clique trees?

Message Passing: Belief Propagation

= Recall the clique tree calibration algorithm
= Upon calibration the final potential (belief) at i is:

= A message from i to j sums out the non-sepset
variables from the product of initial potential and all
messages except for the one from\j to |

“Sepset belief”
fﬂi,j(si,j) )

=« Forms a basis of an alternative way of computing messages
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Message Passing: Belief Propagation

Bayesian network Clique tree
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= Root: G,

= C, to C, Message: %2(X;)
C, to C; Message: %..(X,) =
» Sum-product message passing

X1 - ><1 P(Xl)P(Xz | xl)

Alternatively compute 7,[X, X;1=06,,,(X;)d;,,(X, m
And then: “Sepset beligfy,
(ZgalX. Xi1)

\M: = X :XZ”Z[X21X3]53—>2(X3)

- Thus, the two aBproaches are equivalent

Message Passing: Belief Propagation

= Based on the observation above,
= Different message passing scheme, belief propagation

= Each clique C; maintains its fully updated beliefs r;
= product of initial clique potentials ©? and messages from neighbors 5, _;

« Each sepset also maintains its belief ;)
» product of the messages in both directio! @
= The entire message passing process is executed in an equivalent way in terms of
the clique and sepset beliefs — s and p;§'s.

Sy
= Basic idea (b;;=0, .;0; ) J @

. Each_ cligue C_i initialize 'efﬁas_ 0 (=]]@? and _then updates it by
multiplying W|th received from its neighbors.

= Store at each sepset S;; the previous sepset belief u;; regardless of the direction
of the message passed

= When passing a message from C; to G, divide the new sepset belief 0;; = T

= Update the clique belief =; by multiplying with.

= This is called belief update or belief propagation
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Message Passing: Belief Propagation

= Initialize the clique tree

= For each clique C; set @m

= For each edge C—C;jset 4 Myl «1 (52)

= While uninformed cliques exist
= Select C—C<—
= Send message from C; to G

= Equivalent to the sum-product message passing algorithm?

= Yes — a simple algebraic manipulation, left aq/ESj_#& "

Cligue Tree Invariant

= Belief propagation can be viewed a
the joint distribution
= Upon calibration we showed

eparg meterizing
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= Initially this |nvar|ant holds sincé
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= At each update sﬁf—i{b invariant is also maintained

= Message only change@no most terms r¢main unchanged
/ 4~ « We need to show that for new v, '

-> Belief propagation reparameterizes P’@
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Answering Queries

= Posterior distribution queries on variable@ FO()
= Sum out(rrelevant variables from any clique containing X
= Posterior distribution queries on family X,Pa(X) [ X

/I\ = Thedfamily preservation property implies thare in the

same clique.
= Sum out irrelevant variables from clique containing X,Pa(X)
’.5’ Introducing\e/v\ig\ef@ pLX (L2 )

= Compute posterior of X where X appears in clique with Z J@Z_
= Since clique tree is callbrated multiply clique that contains X and Z with
|nd|cator unction I and sum out irrelevant variables.
\)"\ = Compute posterior of X if X does not share a clique with Z

= Introduce indicator function 1(Z=z) into some clique containing Z and
propagate messages along path to clique containing X

= Sum out irrelevant factors from ¢l

Po (X) =TT ¢
I

So far, we haven’t really discussed
how to construct clique trees...
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Constructing Clique Trees

= Two basic approaches
= 1. Based on variable elimination <
= 2. Based on direct graph manipulation <

= Using variable elimination

= The execution of a variable elimination algorithm can be§
associated with a cluster graph.

» Create a cluster@for eac r used during a VE run
= Create an edge betweeri C; and C/when a factor generated by
C, is used directly by C; (or vice versa)

- We showed that cluster graph is a tree satisfying the
running intersection property and thus it is a legal clique tree
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Direct Graph Manipulation

= Goal: construct a tree that is family preserving and obeys the}
running intersection property

. The{i'aauced graph Ié) is necessarily a chordal graph. 4

= The converse holds: any chordal graph can be used as the basis for
inference.

L = Any chordal graph can be associated with a (Theorem 4.12)

= Reminder: The induced graph I , over factors F and ordering a.:
= Union of all of the graphs resulting from the different steps of the variable elimination

a:ﬁsu.
= ( X; and Xjare connected if they appeared in the same factor throughout the VE
algorithm using_qﬁs the ordering @

Original %/
graph f ,\ /
| = /




Constructing Clique Trees

= The induced graph I , is necessarily a chordal graph.
= Any chordal graph can be associated with a clique tree (Theorem 4.12)

Step I:(Trian;ulaté)the graph to construct a chordal graph H
= Constructing a chordal graph that subsumes an existing grapR_H'

. \@m find @ minimum trianqulation where the largest clique in the resulting
c

hérdal graph has minimum size
= Exact algorithms are too expensive and one typically resorts to heuristic
algorithms. (e.g..node elimination technigues; see K&F 9.4.3.2)

= Step II: Find cliques in H and make each a node in the clique tree

= Finding maximm is NP-hard
= Can begin wit , each member of which is guaranteed to be a clique,
and then use a greedy algorithm that adds nodes to the clique until it no longer

induces a fully connected subgraph.
= Step III: Construct a tree over the clique nodes

» Use fnaximum spanning tree algorithih on ap-undirected graph whose nodes are

Lcliques selected above and edge weight is
= We can show that resulting graph obeys(u

— valid clique tree
17

One possible
triangulation

$

Cluster graph with edge weights
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Part 11
PARAMETER LEARNING

19

Learning Introduction

= So far, we assumed that the networks were given

= Where do the networks come from?
= Knowledge engineering with aid of experts <

= Learning: automated construction of networks@}
« Learn by examples or instances <
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Learning Introduction

= Input: dataset of instances D={d[1],...d@|]} <~
= Output: Bayesian network <— ‘Wd/, @i T
ﬁ

s Measures of success

= How close is the learned network to the original distribution <—
= Use distance measures between distributions

= Often hard because we do not havethe true underlying distribution
= Instead, evaluate performance by how well the network predicts new
unseen examples (“test data”)
» Classification accuracy <—

= How mcture of the network to the true one?
= Us between structures

= Hard because we do not know the true structure
= Instead, ask whether independencies lea Ged hald in test data >
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Prior Knowledge

= Prespecified §tructure; <

= Learn only CPDs
= Prespecified variables ”E

. Learn an

= I@ variables

= Complete/incomplete data
- p( et

= Unobserved variables
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Learning Bayesian Networks

= Four types of problems will be covered

= Data ?
= Prior information%

POYTX0X2)

X0 | X! 02 08
X;! X0 0.1 09
X;! Xp! 02 0.98/
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I. Known Structure, Complete Data

0
= Goal: \Fj\a/rarp@ﬁestimation
= Data does not contain missing values

Initial
network
X, X, Y l )
D) | o | e POYIX,X2)
&[0 [0 X | X |y ¥
Inpui X, X! y! @ )@ M
Data X;° X0 y° &@ 02 .
! X! y! @_%
X,0 X! yi X, 1 X
X! X,0 yo 24
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II. Unknown Structure, Complete Data

= Goal: Structure learning & parameter estimation
c——~— —— =
= Data does not contain missing values

- ® ® # [ % o
network @

Xy X, Y ’(\W‘ij
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III. Known Structure, Incomplete Data

= Goal:\Parameter estimation

= Data contains missing values (e.g. Naive Bayes)

Initial
network
Xl 2
G| x y° P(YIX1,X2)
X! @ yo X | X Y y!
nput | L& Lxt | G ¢ Pet A0
Data @ ) )D % |x! |02 08
) X! yt Xt %0 0.1 09
X0 | xt! ? X1 %! \QOZ 0.98 /]
X! ? yo \'/26
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IV. Unknown Structure, Incomplete Data

= Goal¢ Structure learnin &@es’ci\ma‘/’uon
= Data contains missing value
\.
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Parameter Estimation

= Input
= Network structure
(. Choice of parametric family for eac P(X|Pa(X,)

= Goal: Learn CPD parameters <—

= Two main approaches (MLE)

= Maximum likelihood estimation
= Bayesian approaches
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Biased Coin Toss Example

= Coin can land in two positions: @ or@ @

» Estimation task

« Gi exampl estimate
P(X=h)=\WandP(X=t)= 1-0

= Denote by P(H) and P(T) to mean nd P(X=t),
respectively.

n Assumption:

= Tosses are controlled by an (unknown) parameter o<
= Tosses are sampled from the same distribut'@n <
= Tosses are independent of each other ¢
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Biased Coin Toss Example

» Goal: find@e[o,l] that predicts the data well @ pUCK =0

= "Predicts the data well” —of the data g|ven 0
D10 [1° et F 0 - [f{PGI oD

= Example: probablllty of sequence HlT[T,I;I,He YM

{P(H 9P (T 10)R(T |0)P(H | O)P(H |6) =1~ 0)

S | N el | @
4 02 04 06 08 1
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Maximum Likelihood Estimator

= Parameter 6 that. maximizes(l(D:0)= pcpl 6

= In our example, .&/maximizes the sequence
H,T,T,HH .
@H“:LO 6

@

' 1 '
0 02 04 Q)._g) 08 1 0
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Maximum Likelihood Estimator
= General case P(M“'M'fle)

= Observations( :,Q heads and@tails D
= Find 6 maximizing likelihood mé)

= Equivalent to maximizing log-likelihood

I(M,,,M, :0) M. logl—0)) €—
ore—>

» Differentiating the log-likelihood and solving fo@)we get that the
maximum likelihood parameter is: 0 WM& M MM'“Q)
@ o ‘ My + M,

G

96 | 926w
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