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Lecture 5 – Apr 11, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Undirected Graphical Models II

Readings: K&F 4.4, 4.5, 4.6

Last time
Markov networks representation

Local factor models (potentials)
Independence properties

Global, pairwise, local independencies

I-Map ↔ Factorization

Today…
Parameterization revisited
Bayesian nets and Markov nets
Partially directed graphs
Inference 101
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Factor Graphs
From the Markov network structure, we are do not know 
how it is parameterized. 

Example: fully connected graph may have pairwise potentials or one 
large (exponential) potential over all nodes
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A

B C
Markov network

Solution: Factor Graphs
Undirected graph
Two types of nodes: Variable nodes, Factor nodes
Connectivity?
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Factor Graphs: example
Two types of nodes: Variable nodes, Factor nodes
Connectivity

Each factor node is associated with exactly one factor πi[Di]
Scope of factor are all neighbor variables of the factor node

A

B C

πABC

Factor graph for
joint parameterization

A

B C

πAB πCA

πBC

Factor graph for pairwise 
parameterization

A

B C
Markov network
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Local Structure: Feature Representation
Factor graphs still encode complete tables

A feature φ[D] on variables D is an indicator function that for 
some d∈D: for example,

Several features can be defined on one clique

Any factor can be represented by features, where in general case, we 
define a feature and weight for each entry in the factor 

Apply log-transformation: πi[D] = exp ( ‐wiφi[D] )
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Log-linear model
A distribution P is a log-linear model over H if it has

Features φ1[D1],...,φk[Dk] where each Di is a complete 
subgraph in H
A set of weights w1,...,wk such that

Advantages
Log-linear model is more compact for many distributions 
especially with large domain variables 

Representation is intuitive and modular – Features can be 
modularly added between any interacting sets of variables
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Markov Network Parameterizations
Choice 1: Markov network

Product over potentials
Right representation for discussing independence queries

Choice 2: Factor graph
Product over potentials
Useful for inference (later)

Choice 3: Log-linear model
Product over feature weights
Useful for discussing parameterizations
Useful for representing context specific structures

All parameterizations are interchangeable
7

Outline
Markov networks representation

Local factor models
Independencies

global, pairwise, local independencies

I-Map ↔ Factorization

Today…
Parameterization revisited
Bayesian nets and Markov nets
Partially directed graphs
Inference 101
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From Bayesian nets to Markov nets
Goal: build a Markov network H capable of 
representing any distribution P that factorizes over G

Equivalent to requiring I(H)⊆I(G)

Construction process
Based on local Markov independencies

If X is connected with Y in H, (X⊥U-{X}-Y|Y) .

Connect each X to every node in the smallest set Y s.t.: 
{(X⊥U-{X}-Y|Y) : X∈H} ⊆I(G)
How can we find Y by querying G?

Y = Markov blanket of X in G?
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Blocking Paths

X

Y

X

Y

Y 

XZ

Active path:
parents

Active path:
descendants

Active path:
v-structure

Block path:
parents

Block path:
children

Block path:
children

children’s parents
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From Bayesian nets to Markov nets
Goal: build a Markov network H capable of representing 
any distribution P that factorizes over G

Equivalent to requiring I(H)⊆I(G)

Construction process
Based on local Markov independencies

If X is connected with Y in H, (X⊥U-{X}-Y|Y) .
Connect each X to every node in the smallest set Y s.t.: 
{(X⊥U-{X}-Y|Y) : X∈H} ⊆I(G)
How can we find Y by querying G?

Y = Markov blanket of X in G (parents, children, children’s parents)
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Moralized Graphs
The Moral graph of a Bayesian network structure G is 
the undirected graph that contains an undirected 
edge between X and Y if

X and Y are directly connected in G
X and Y have a common child in G

Bayesian network G Moralized graph H

CSE 515 – Statistical Methods – Spring 2011 12
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Parameterizing Moralized Graphs
Moralized graph contains a full clique for every Xi
and its parents Pa(Xi)

We can associate CPDs with a clique

Do we lose independence assumptions implied by 
the graph structure?

Yes, immoral v-structures

A

C

B A

C

B

(A⊥B)
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From Markov nets to Bayesian nets
Transformation is more difficult and the resulting 
network can be much larger than the Markov 
network

Construction algorithm
Use Markov network as template for independencies I(H)
Fix ordering of nodes
Add each node along with its minimal parent set 
according to the independencies defined in the 
distribution
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From Markov nets to Bayesian nets

A

CB
Order: A,B,C,D,E,F

ED

F

A

CB

ED

F
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Markov network H Bayesian network G

Chordal Graphs
Let X1—X2—...—Xk—X1 be a loop in the graph
A chord in the loop is an edge connecting Xi and 
Xj for two nonconsecutive nodes Xi and Xj

An undirected graph is chordal if any loop
X1—X2—...—Xk—X1 for k ≥4 has a chord

That is, longest minimal loop is a triangle
Chordal graphs are often called triangulated

A directed graph is chordal if its underlying
undirected graph is chordal
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From Markov Nets to Bayesian Nets
Theorem: Let H be a Markov network structure and G 
be any minimal I-map for H. Then G is chordal.

The process of turning a Markov network into a 
Bayesian network is called triangulation

The process loses independencies

A

CB

ED

F

A

CB

ED

F(B⊥C|A,F)
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Order: A,B,C,D,E,F
H G

Last time
Markov networks representation

Local factor models
Independencies

global, pairwise, local independencies

I-Map ↔ Factorization

Today…
Parameterization revisited
Bayesian nets and Markov nets
Partially directed graphs
Inference 101
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Conditional Random Fields (CRFs)
Special case of partially directed models

A conditional random field is an undirected graph H whose 
nodes correspond to XUY; the network is annotated with a set 
of factors φ1(D1),…, φm(Dm) such that each Di X. The network 
encodes a conditional distribution as follows:

Two variables in H are connected by an undirected edge 
whenever they appear together in the scope of some factor φ.
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Why Conditional?
Why P(Y|X), not P(Y,X)?

The network explicitly does not encode any distribution over the variables in 
X.
→ One of the main strengths of the CRF representation.

This flexibility allows us to do many things:
Incorporating into the model a rich set of observed variables X whose 
dependencies may be quite complex or even poorly understood.
Including continuous variables X whose distribution may not have a simple 
parametric form
Using domain knowledge in order to define a rich set of features 
characterizing our domain, without worrying about modeling their joint 
distribution.

Many applications: Computer vision (detail later), text analysis, part-
of-speech labeling, many more

CSE 515 – Statistical Methods – Spring 2011 20
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Conditional Random Fields
Directed and undirected dependencies.

A CRF defines conditional distribution of Y on X, P(Y|X).
It can be viewed as a partially directed graph, where we have an 
undirected component over Y, which has the variables in X as 
parents.

Any difference with Bayesian networks?
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Conditional Bayesian 
network (fully directed)

CRF
(partially directed)

∏∏
=

−

=
+=

k

i
iii

k

i
iii XYYYP

1

1

1
1 ),(),(),(~ φφXY ∏∏

=

−

=
+=

k

i
ii

k

i
ii XYPYYPP

1

1

1
1 )|()|()|( XY

CSE 515 – Statistical Methods – Spring 2011 21

Chain Networks
Combines Markov networks and Bayesian networks
Partially directed graph (PDAG)

As for undirected graphs, we have three distinct 
interpretations for the independence assumptions 
implied by a P-DAG

D

A

BC

EExample:
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Pairwise Independencies
Every node X is independent from any node which is 
not its descendant given all non-descendants of X

Formally:
IP(K) = {(X⊥Y|ND(X)-{X,Y}) : X—Y∉K, Y∈ND(X)}

Example:

(D⊥A | B,C,E)

(C⊥E | A)

D

A

BC

E
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Local Markov Independencies
Let Boundary(X) be the union of the parents of X and the 
neighbors of X
Local Markov independencies state that a node X is 
independent of its non-descendants given its boundary

Formally:
IL(K) = {(X⊥ND(X)-Boundary(X)|Boundary(X)) : X∈U}

Example:

(D⊥A,E | B,C)

D

A

BC

E
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Global Independencies
I(K) = {(X⊥Y|Z) : X,Y,Z, X is c-separated from Y 
given Z}

X is c-separated from Y given Z if X is separated from 
Y given Z in the undirected moralized graph M[K] 

The moralized graph of a P-DAG K is an undirected 
graph M[K] by

Connecting any pair of parents of a given node
Converting all directed edges to undirected edges

For positive distributions: I(K) ↔ IL(K) ↔ IP(K)
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Domain Application: Vision
The image segmentation problem

Task: Partition an image into distinct parts of the scene
Example: separate water, sky, background

CSE 515 – Statistical Methods – Spring 2011 26
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Markov Network for Segmentation
Grid structured Markov network (CRF)
Random variables (Xi, Yi) correspond to pixel i

Xi: Input image for pixel i (always given)
Color, texture, location …

Yi: Domain is {1,...K} (e.g. 1:road, 2:car, 3:bldg) (generally not given)
Value represents region assignment to pixel i

Neighboring pixels are connected in the network
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Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

Markov Network for Segmentation
Node potentials (appearance distribution)

Introduce node potential exp(-wi
k1{Yi=k})

wi
k – extent to which pixel i “fits” region k (e.g., based on Xi

containing various info such as color, location, texture on 
pixel i)

Edge potentials (contiguity preference)
Encodes contiguity preference by edge potential
exp(λ1{Yi=Yj}) for λ>0

28

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Appearance 
distribution

Contiguity 
preference

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34
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Markov Network for Segmentation

Solution: inference on the pairwise Markov network
Find most likely assignment k (=sky, building, etc) to Yi variables

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Appearance 
distribution

Contiguity 
preference

29

πi [Yi, Xi]=exp(-wi
k1{Yi=k})

πi,j [Yi, Yj]= 
exp(λ1{Yi=Yj})
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Y11=1         Y12=1          Y13=2           Y14=2

Y21=1         Y22=2          Y23=2           Y24=3

Y31=1           Y32=2     Y33=3     Y34=3

Y=1: sky, Y=2: car, Y=3: building
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Example Results
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Baseline (a simple classifier):
Result of segmentation using node 
potentials alone, so that each pixel 
is classified independently

Result of segmentation using a 
pairwise Markov network
encoding interactions between 
adjacent pixels

Input 1

Input 2
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Last time
Markov networks representation

Local factor models
Independencies

global, pairwise, local independencies

I-Map ↔ Factorization

Today…
Parameterization revisited
Bayesian nets and Markov nets
Partially directed graphs
Inference 101
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Inference
Markov networks and Bayesian networks 
represent a joint probability distribution

Networks contain information needed to answer any 
query about the distribution
Inference is the process of answering such queries

Direction between variables does not restrict queries
Inference combines evidence from all network parts

CSE 515 – Statistical Methods – Spring 2011 32
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Likelihood Queries
Compute probability (=likelihood) of the evidence

Evidence: subset of variables E and an assignment e
Task: compute P(E=e)

Computation
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Conditional Probability Queries
Conditional probability queries

Evidence: subset of variables E and an assignment e
Query: a subset of variables Y
Task: compute P(Y | E=e)

Applications
Medical and fault diagnosis
Genetic inheritance

Computation
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Maximum A Posteriori Assignment
Maximum A Posteriori Assignment (MAP)

Evidence: subset of variables E and an assignment e
Query: a subset of variables Y
Task: compute MAP(Y|E=e) = argmaxy P(Y=y | E=e)
Note 1: there may be more than one possible solution
Note 2: equivalent to computing 

argmaxy P(Y=y , E=e) 
Why? P(Y=y | E=e) = P(Y=y , E=e) / P(E=e) 

Computation
∑

−−∈

=====
EYUw

y' eEyYwWeyY )|',(argmax)|(MAP P
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Most Probable Assignment: MPE
Most Probable Explanation (MPE)

Evidence: subset of variables E and an assignment e
Query: all other variables Y (Y=U-E)
Task: compute MPE(Y|E=e) = argmaxy P(Y=y | E=e)
Note: there may be more than one possible solution

Applications
Decoding messages: find the most likely transmitted bits
Diagnosis: find a single most likely consistent hypothesis
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Most Probable Assignment: MPE
Note: We are searching for the most likely joint 
assignment to all variables

May be different than most likely assignment (MAP) of 
each variable.
Any example?

B

A B0 B1

a0 0.1 0.9

a1 0.5 0.5

I

a0 a1

0.4 0.6

P(B|A)P(A)

A

B
Given E= φ
P(a1)>P(a0) MAP(A) = a1

MPE(A,B) = {a0, b1}
P(a0, b0) = 0.04
P(a0, b1) = 0.36
P(a1, b0) = 0.3
P(a1, b1) = 0.3
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Exact Inference in Graphical Models
Graphical models can be used to answer

Conditional probability queries
MAP queries
MPE queries

Naïve approach
Generate joint distribution
Depending on query, compute sum/max

Exponential blowup

Exploit independencies for efficient inference
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Summary: Markov network representation
Markov Networks – undirected graphical models

Like Bayesian networks, define independence assumptions
Three definitions exist, all equivalent in positive distributions
Factorization is defined as product of factors over complete sub-graph

Alternative parameterizations
Factor graphs
Log-linear models

Relationship to Bayesian networks
Represent different families of independencies
Moralization – transforming Bayesian networks to Markov networks.
Triangulation – transforming Markov networks to Bayesian networks.

Partially directed graphs
Conditional random fields (CRFs)
Application to image segmentation
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Announcements
Feedback on the course

Email your comments anonymously.
See the course website.

Additional OH
Tuesday in the morning 9-10am

Slightly modified course outline

CSE 515 – Statistical Methods – Spring 2011 40
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Where are we? What next?

1. Probabilistic model 
representation

3. Learning 
parameters/structure
- Learning CPDs, 
structure from data

4. Approximate inference
- P(X=x|E=e)≈?

5. Applications
- Decision making, 
temporal processes

2. Exact inference in BNs
- P(X=x|E=e)=?
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