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Lecture 18 – June 1, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Learning undirected Models

Readings: K&F 20.3, 20.4, 20.6, 20.7

Mean Field Approximation
The energy functional is easy to compute, even for 
networks where inference is complex

The energy functional for a fully factored distribution Q 
can be rewritten simply as a sum of expectations, each 
one over a small set of variables.

The complexity of this expression depends on the size of 
the factors in PF, and not on the topology of the network.
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Is the energy functional convex in the 
parameters of Q?
- entropy x log(x) is concave in x
- xy is jointly convex in (x,y)
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Learning Undirected Graphs
The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF

Generative vs. discriminative models
Directed vs. undirected models

Learning with incomplete data
Learning with Priors

Maximum A Priori (MAP) estimation

Learning with alternative objectives
Pseudo likelihood objective
Max-margin learning

Structure Learning
3

Collective Classification
Taking a set of interrelated instances and jointly 
labeling them 

Sequential labeling: labeling instances organized in a sequence
Example: handwriting recognition

Model-based approach
Training data: Fully labeled (both Y and X are observed)
Test data: only X is observed 4

b r ea c

Use local information 
Exploit correlations

A sequence of observations (feature)

Label them with some joint label
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Collective Classification
Trade-offs between different models

Hidden Markov Model (HMM)
Maximum Entropy Markov Model (MEMM)
Conditional Random Field (CRF)
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Y: Joint label
X: A sequence of observations 
(feature)

Hidden Markov Model
For each classification task,

Single (hidden) state variable Y (e.g. label)
Single (observed) observation variable X (e.g. image)

Observation probability P(X|Y)
For example, P(X=     | Y=‘b’)

Transition probability P(Y’|Y)
Statistical dependencies between the neighboring Y’s

Y Y’
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Hidden Markov Model
For each classification task,

Single (hidden) state variable Y
Single (observed) observation variable X

Observation probability P(X|Y)
Transition probability P(Y’|Y) assumed to be sparse

Usually encoded by a state transition graph

Y1 Y2 Y3 Y4

y1 y2 y3 y4

y1 0.2 0.8 0 0

y2 0 0 1 0

y3 0.4 0 0 0.6

y4 0 0.5 0 0.5

P(Y’|Y)

State transition representation
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Learning: Hidden Markov Model
Generative models

Define a joint probability P(Y,X) over paired label Y
and observation X
Parameters trained to maximize the joint log-likelihood 
log P(Y,X)

Joint distribution
P(X,Y) = ?

We can label new observations x by inferring 
P(Y|X=x)

To make inference tractable, there are typically no 
long-range dependencies (Markov assumption)

HMM
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X2
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X3
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Discriminative (Conditional) Models
Specifies the probability of possible label 
sequences given the observations, P(Y|X)

X is always observed

Key advantage:
Does not “waste” parameters on modeling P(X)
Distribution over Y can depend on non-independent 
features X without modeling feature dependencies
Transition probabilities can depend on past and future

Two representations
Maximum Entropy Markov Models (MEMMs)
Conditional Random Fields (CRFs)
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Max Entropy Markov Models
Models the probability over the next state given the 
previous state and the observations
Discriminative model: Provides a model for P(Y|X)

Weakness: label bias problem
(Yi⊥Xj | X-j) for any j>i : an observation from later in the 
sequence has absolutely no effect on the probability of 
the current state

MEMM
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Label-Bias Problem: Example
Weakness: current label is not affected by the future 
observation
A model for distinguishing ‘rob’ from ‘rib’
Suppose we get an input sequence X=‘rib’

First step, ‘r’ matches both possible states equally likely
Next, ‘i’ is observed, but since both y1 and y4 have one 
outgoing state, they both give probability 1 to the next state
Note: if one word is more likely in train data, it will win
Does not happen in HMMs

y0 y1 y2 y3 y4 y5

y0 0 0.5 0.5 0 0 0

y1 0 0 1 0 0 0

y2 0 0 0 1 0 0

y3 0 0 0 1 0 0

y4 0 0 0 0 0 1

y5 0 0 0 1 0 0

P(Y’|Y)

y0

y1 y2

y3

State transition representation

y4 y5
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Conditional Random Fields
Advantages of MEMMs without the label
bias problem
Key difference

MEMMs use per-state model for conditional probabilities 
of next state given current state 
CRFs have a single model for the joint probability of the 
entire sequence of labels given the observations

Thus, weights of different features at different states can trade 
off against each other

CRF training
Maximum likelihood estimation or MAP (a little later)
Objective function is concave, guaranteeing convergence 
to global optimum 12
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Conditional Random Fields
Let G=(V,E) be a graph with vertices V and edges 
E, such that                  
Then (X,Y) is a CRF if the random variables Yv
obey the Markov property with respect to the 
graph: 

where Yj is the set of Y neighbors of Yi

And if it models only P(Y|X)

Y = (Yv )v∈V

)~,Y,X|Y(),Y,X|Y( viPviP j
v

i
v =≠
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CRF
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X

Y3
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Conditional Random Fields
Joint probability distribution for trees over Y

Cliques (and thus potentials) are the edges and vertices

x are the observed variables
y are the state variables
y[S] is the components of Y associated with vertices in S
fk is an edge feature with weight λk

gk is a vertex feature with weight µk

Note that features can be over all of variables in x

pθ (y | x) ∝exp λk fk (e,y[e],x)
e∈E ,k

∑ + µkgk (v,y[v],x)
v∈V ,k
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Comparison 1/3
Computational perspective

Purely directed models – HMMs and MEMMs – are 
much more easily learned
Their parameters can be computed in closed form 
using MLE or Bayesian estimation
CRF requires an iterative gradient-based approach and 
inference must be run for every training instance

15MEMMHMM CRF

Y0 Y1

X1

Y2

X2

Y3

X3

Y0 Y1

X1

Y2

X2

Y3

X3

Y0 Y1

X1

Y2

X2

Y3

X3

Comparison 2/3
Ability to use a rich feature set

Success in a classification task often depends strongly on 
the quality of our features
In an HMM, we must explicitly model the distribution 
over features X, including the interactions between them

Depending on features, this type of model is very hard and often 
impossible to construct correctly

MEMM, CRF are both discriminative models and so they 
avoid this challenge entirely

16MEMMHMM CRF
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Comparison: Summary
Independence assumptions made by the model

In MEMMs, (Yi⊥Xj| X-j) for any j>i : current label is not 
affected by the future observation (label bias problem)

Summary
In cases where there are many correlated features, 
discriminative models are probably better
If only limited data are available, the stronger bias of the 
generative model (modeling P(X)) may dominate and 
allow learning with fewer samples
Among the discriminative models, MEMMs should 
probably be avoided in cases where many transitions are 
close to deterministic (label bias problem)
In many cases, CRFs are likely to be a safer choice, but 
the computational cost may be prohibitive for large 
datasets
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Learning Undirected Graphs
The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF

Generative vs. discriminative models
Directed vs. undirected models

Learning with incomplete data
Learning with Priors

Maximum A Priori (MAP) estimation

Learning with alternative objectives
Pseudo likelihood objective
Max-margin learning

Structure Learning
18
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Learning with Missing Data
In MLE with complete data, the gradient is

Gradient of likelihood is now difference of 
expectations

Y: hidden, X: observed

Can use gradient descent or EM 19
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Learning Undirected Graphs
The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF

Generative vs. discriminative models
Directed vs. undirected models

Learning with incomplete data
Learning with Priors

Maximum A Priori (MAP) estimation

Learning with alternative objectives
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Max-margin learning

Structure Learning
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Maximum A Priori (MAP) estimation
Introducing a prior distribution         over the 
model parameters

Bayesian approach
Given D={x[1],…,x[M]},

Maximum a Priori (MAP) estimation

Maximum likelihood estimation (MLE)
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MAP estimation

Gaussian prior

Converting to log-space
L2 regularization
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Laplacian Prior
Laplacian prior

Converting to log-space
L1 regularization
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Why Regularization?
Both forms of regularization penalize parameters whose 
magnitude is large

Why is a bias in favor of parameters of low magnitude a 
reasonable one?
A prior often serves to pull the distribution toward an 
“uninformed” one, smoothing out fluctuations in the data

A distribution is “smooth” if the probabilities assigned 
to different assignments are not radically different.

Consider two assignments
Log of their relative probability is 

When all Θ’s have small magnitude, this log-ratio is also 
bounded, resulting in a smooth distribution.
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L1 vs L2 Regularization

Gaussian prior (L2):

Laplacian prior (L1):
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Key differences:
In L2, the penalty grows quadratically with the parameter 
magnitude.
In L1, the penalty is linear in the parameter magnitude.
In L2, as the parameters get close to 0, the effect of the 
penalty diminishes, whereas in L1 case, the penalty is linear all 
the way until the parameter value is 0.

The models learned with an L1 regularization tend to 
be much sparser than the L2 case.

The strength depends on the hyper-parameter β
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The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF

Generative vs. discriminative models
Directed vs. undirected models

Learning with incomplete data
Learning with Priors

Maximum A Priori (MAP) estimation

Learning with alternative objectives
Pseudo likelihood objective
Max-margin learning

Structure Learning
26
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Why Alternative Objectives?
The log-likelihood objective, on the case of a single 
data instance ξ

MLE can be viewed as aiming to increase the distance 
between the log of the un-normalized probability (log-
measure) of ξ and the aggregate of the measures of all 
instances.

Key difficulty: the 2nd term involves a summation over 
the exponentially many instances in Val(X).

In MLE, we have to compute the log-likelihood in every 
iteration (approximate inference)

Alternative objectives
Aim to increase the difference between the log-measure of the 
data instance and a more tractable set of other instances 
(“Contrastive” objectives) 27
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Pseudo-likelihood
For a data instance ξ, using the chain rule, we can 
write

We can approximate this formulation by replacing 
each term by the conditional probability xj given all 
other variables x-j

This approximation leads to the pseudolikelihood
objective: Given D with M training instances,
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Gradient of Pseudolikelihood
Pseudolikelihood objective:

Each term is a log-conditional likelihood term over a 
single var Xj, conditional on all the remaining vars

The 2nd term involves a summation over values on only a 
single var Xj (does not require inference at each step)

Widely used in vision, spatial statistics, etc.
Jointly concave over all parameters
Consistent estimator

As the number of data instances M goes to infinity, with 
probability 1, MLE of the log-likelihood objective Θ* (the true 
parameter) is a global optimum of the pseudolikelihood
objective 29
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Pseudolikelihood vs Likelihood
When the pseudolikelihood does not work well?

Depends on the types of queries for which we intend to use the 
model

30

Psuedolikelihood objective is 
a better training objective

If we plan to run queries 
where we condition on most of 
the variables and query the 
values of only a few, the 
pseudolikelihood objective is a 
very close match to the type of 
predictions we would like to 
make
Any example? 

Star 
Wars I

Star Wars 
VI

Indiana 
Jones

Matrix
Harry 

Potter II

Harry 
Potter I

Netflix collaborative filtering

Star 
Wars II

…

…
5

2

? 3

?

4

?

New user 1
Probabilistic inference…
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Pseudolikelihood vs Likelihood

However, even in cases where the likelihood is the more 
appropriate objective, we may have to resort to 
pseudolikelihood for computational reasons

In many cases, this objective performs surprisingly well. 31

Likelihood objective is a better training objective
If a typical query involves most or all of the variables in 
the model, the likelihood objective is more appropriate.
E.g. Given E=image what is P(X=labels|E=image)=?

X11=1          X12=1          X13=2           X14=2

X21=1          X22=2          X23=2           X24=3

X31=1           X32=2         X33=3            X34=3 A grid-structured 
Markov network

Image from the website of Prof Daphne Koller’s lab
http://dags.stanford.edu/projects/scenedataset.html)

Image from the website of Prof Daphne Koller’s lab
(http://dags.stanford.edu/projects/scenedataset.html)

Max-margin Training
Say that we want to use the model for predicting a 
MAP assignment

(E.g. image segmentation)
In this setting, our training set consists of a set of pairs 
D={(y[m],x[m])}m=1,…,M.
Given an observation x[m], we want our learned model to 
give the highest probability to y[m].
In other words, we want the probability PΘ(y[m]|x[m]) to be 
higher than any other probability PΘ(y|x[m]) for y≠y[m].

To increase our confidence in the prediction, we would 
like to increase the log-probability gap as much as 
possible by increasing

This difference between the log-probability of the target 
assignment y[m] and that of the “next best” assignment is 
called the margin.
The higher the margin, the more confidence the model is

32
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Handwriting Recognition Example
Margin

We want:

Equivalently:

a lot!
…

“brace”

“brace”

“aaaaa”

“brace” “aaaab”

“brace” “zzzzz”
33
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Learning Undirected Graphs
The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF

Generative vs. discriminative models
Directed vs. undirected models

Learning with incomplete data
Learning with Priors

Maximum A Priori (MAP) estimation

Learning with alternative objectives
Structure Learning

Structure learning via L1 regularization
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Structure Learning
Start with atomic features
Greedily conjoin features to improve score
Problem: Need to re-estimate weights for each 
new candidate
Approximation: Keep weights of previous features 
constant

38

Structure Learning via Regularization*
Treat the structure learning problem as a parameter 
estimation problem in a fully connected network
L1 regularization to obtain a sparse representation 

Likelihood or pseudolikelihood objective
Convex optimization problem

39
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*Lee 07, Wainwright 07, Hoefling 09 
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