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CSE 515, Statistical Methods, Spring 2011
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Is the energy functional convex in the
parameters of Q?

- entropy x log(x) is concave in x

- Xy is jointly convex in (x,y)

one over a small set of variables.

F[PF’Q] = ZEQ[In¢]+ HQ(U)

peF
Eqlin¢1=3.Qu)ng(u,) =X ([T, ., Q0x)ng(u,)

HQ(U)ZZHQ(Xi)

= The complexity of this expression depends on the size of
the factors in P, and not on the topology of the network.
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Learning Undirected Graphs

= The likelihood function

= Learning parameters

:>- Collective classification with HMM, MEMM, CRF
= Generative vs. discriminative models

= Directed vs. undirected models
Learning with incomplete data
Learning with Priors

= Maximum A Priori (MAP) estimation
Learning with alternative objectives
= Pseudo likelihood objective

= Max-margin learning

Structure Learning

Collective Classification

= Taking a set of interrelated instances and jointly
labeling them
= Sequential labeling: labeling instances organized in a sequence
= Example: handwriting recognition

E X A sequence of observations (feature)

Use local information ]

u
- = Exploit correlations
b r a c e Y Label them with some joint label

= Model-based approach
= Training data: Fully labeled (both Y and X are observed)
= Test data: only X is observed 4




Collective Classification

= Trade-offs between different models
= Hidden Markov Model (HMM)

= Maximum Entropy Markov Model (MEMM)
= Conditional Random Field (CRF)

MEMM CRF

& ® & W& ©

Y: Joint label

X: A sequence of observations
(feature)

Hidden Markov Model

= For each classification task,

= Single (hidden) state variable Y (e.g. label)

= Single (observed) observation variable X (e.g. image)
= Observation probability P(X]|Y)

= For example, P(X= }1 | Y="b")
= Transition probability P(Y'[Y)

» Statistical dependencies between the neighboring Y’s

| O0—0 OO0
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Gy G Unrolled network




Hidden Markov Model

= For each classification task,
= Single (hidden) state variable Y
= Single (observed) observation variable X

= Observation probability P(X]|Y)
= Transition probability P(Y’|Y) assumed to be sparse
= Usually encoded by a state transition graph
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State transition representation

Learning: Hidden Markov Model

s Generative models

= Define a joint probability P(Y,X) over paired label Y
and observation X

= Parameters trained to maximize the joint log-likelihood
log P(Y,X) .

= Joint distribution
= P(X)Y) =7 @ @ @ @
x) ) &

= We can label new observations x by inferring
P(Y|X=x)
= To make inference tractable, there are typically no
long-range dependencies (Markov assumption)




Discriminative (Conditional) Models

= Specifies the probability of possible label
sequences given the observations, P(Y|X)
= X is always observed

= Key advantage:
= Does not “waste” parameters on modeling P(X)

= Distribution over Y can depend on non-independent
features X without modeling feature dependencies

= Transition probabilities can depend on past and future

= TWo representations
= Maximum Entropy Markov Models (MEMMs)
= Conditional Random Fields (CRFs)

Max Entropy Markov Models

= Models the probability over the next state given the
previous state and the observations

= Discriminative model: Provides a model for P(Y|X)

= Weakness: label bias problem

= (Y, LX; | X)) for any j>i : an observation from later in the
sequence has absolutely no effect on the probability of
the current state

HMM MEMM
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Label-Bias Problem: Ey &

W—L—w
s Weakness: current label is not i @ @ @
i

observation :
= A model for distinguishing ‘rob’ from ‘rib” ¥ D

= Suppose we get an input sequence X="rib’
= First step, 'r" matches both possible states equally likely

= Next, ‘i’ is observed, but since both y! and y* have one
outgoing state, they both give probability 1 to the next state

= Note: if one word is more likely in train data, it will win
= Does not happen in HMMs

P(Y'Y)
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y |0 05 05 0 0 0
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yv /o o 0o 0o o0 1
. . yy|lo o 0o 1 0 o0
State transition representation 1

Conditional Random Fields MEMM

= Advantages of MEMMs without the label @ @

bias problem @
= Key difference

= MEMMs use per-state model for conditional probabilities
of next state given current state
= CRFs have a single model for the joint probability of the
entire sequence of labels given the observations
= Thus, weights of different features at different states can trade

off against each other CRF 0 G e @
= CRF training © © ©

= Maximum likelihood estimation or MAP (a little later)

= Objective function is concave, guaranteeing convergence
to global optimum 1




Conditional Random Fields

= Let G=(V,E) be a graph with vertices V and edges
E, suchthat Y=(Y)),_,

= Then (X,Y) is a CRF if the random variables Y,
obey the Markov property with respect to the

graph: PCY, | X, Y i#v)=P(Y, | X, Y',i~V)

= Where Yi is the set of Y neighbors of Y
= And if it models only P(Y|X)

CRF

YY) N Y —)—y)
OR ~
e
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Conditional Random Fields

= Joint probability distribution for trees over Y
= Cliques (and thus potentials) are the edges and vertices

Py (y |x) ocexp[ zﬂ'kf/( (e;ylel.x)+ Zﬂkgk(v’y[v]’x)]

X are the observed variables

y are the state variables

y[S] is the components of Y associated with vertices in S
f. is an edge feature with weight A,

g, is a vertex feature with weight p,

Note that features can be over all of variables in x

6060 [0 OO
=% |




Comparison 1/3

= Computational perspective

= Purely directed models — HMMs and MEMMs — are

much more easily learned

= Their parameters can be computed in closed form

using MLE or Bayesian estimation

= CRF requires an iterative gradient-based approach and
inference must be run for every training instance

O—~O-O—®
&) @ ®
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HMM

MEMM

CRF 15

Comparison 2/3

= Ability to use a rich feature set

= Success in a classification task often depends strongly on

the quality of our features

= In an HMM, we must explicitly model the distribution
over features X, including the interactions between them
= Depending on features, this type of model is very hard and often

impossible to construct correctly

= MEMM, CRF are both discriminative models and so they

avoid this challenge entirely
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HMM

MEMM

CRF 16




Comparison: Summary

= Independence assumptions made by the model

= In MEMMs, (Y, LX| X) for any j>i : current label is not
affected by the future observation (label bias problem)

= Summary

= In cases where there are many correlated features,
discriminative models are probably better

= If only limited data are available, the stronger bias of the
generative model (modeling P(X)) may dominate and
allow learning with fewer samples

= Among the discriminative models, MEMMs should
probably be avoided in cases where many transitions are
close to deterministic (label bias problem)

= In many cases, CRFs are likely to be a safer choice, but
the computational cost may be prohibitive for large
datasets
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Learning Undirected Graphs

= The likelihood function

= Learning parameters

= Collective classification with HMM, MEMM, CRF
= Generative vs. discriminative models
= Directed vs. undirected models

= Learning with incomplete data

= Learning with Priors
= Maximum A Priori (MAP) estimation

= Learning with alternative objectives
= Pseudo likelihood objective
= Max-margin learning

» Structure Learning
18




Learning with Missing Data
= In MLE with complete data, the gradient is

0 A _
%I(O. D) = ME[ f;[d;]]-ME,[ f;]

! % /\
Number of times feature | | Expected number of times feature
f,is true in data D f, is true according to model

= Gradient of likelihood is now difference of
expectations

= Y: hidden, X: observed
0
%I(B: D) = ME,[f,[y; [ x;]]1- ME,[f]

I % /\
Expected number of times feature f; Expected number of times feature
is true given observed data f, is true according to model

= Can use gradient descent or EM "

Learning Undirected Graphs

= The likelihood function

= Learning parameters

= Collective classification with HMM, MEMM, CRF
= Generative vs. discriminative models
= Directed vs. undirected models

= Learning with incomplete data

=)= Learning with Priors
= Maximum A Priori (MAP) estimation

= Learning with alternative objectives
= Pseudo likelihood objective
= Max-margin learning

» Structure Learning
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Maximum A Priori (MAP) estimation

Introducing a prior distribution P () over the
model parameters

Bayesian approach
= Given D={x[1],...,x[M]},

P(x[M +1]| D) :jP(x[M +1]|6)P(6| D)d@o

Maximum a Priori (MAP) estimation

argmax, P(¢| D) =argmax, P(0)P(D | 6)

Maximum likelihood estimation (MLE)
argmax, P(D|60)
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Gaussian Prior

= MAP estimation
argmax, P(@| D) =argmax, P(6)P(D|0)

logP(€| D) =1logP(D|&)-+logP(0)
= Gaussian prior
k 1 0_2
P@|c?)=]] expy——
)= oo p{ 202}

k

« Converting to log-space - 12 > 6
o 20° T

= L2 regularization
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Laplacian Prior

= Laplacian prior

I:)Laplacian (9 | IB) H Zlﬂ exp{ | Z |}

k
= Converting to log-space _i2|9i |
= L1 regularization P

08

04

P©@) "]

0

0.1

| Laplacian distribution (3=1) and
0 Gaussian distribution (02=1)

-10 -5 0 5 10
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Why Regularization?

= Both forms of regularization penalize parameters whose
magnitude is large

= Why is a bias in favor of parameters of low magnitude a
reasonable one?

= A prior often serves to pull the distribution toward an
“uninformed” one, smoothing out fluctuations in the data

= A distribution is “smooth” if the probabilities assigned
to different assignments are not radically different.
= Consider two assignments & and &'
= Log of their relative probability is
P k k
N =3 012)-2 01, - 3 a1 - ()

i=1

= When all ©'s have small magnitude, this log-ratio is also
bounded, resulting in a smooth distribution.
24




L1 vs L2 Regularization 2u

1 3
= Gaussian prior (L2): =5 D0
i=1

k
= Laplacian prior (L1): —%ZIQI

i=1

UG ° o
0o -

1.6
2

= Key differences:
= In L2, the penalty grows quadratically with the parameter
magnitude.
= In L1, the penalty is linear in the parameter magnitude.

= In L2, as the parameters get close to 0, the effect of the
penalty diminishes, whereas in L1 case, the penalty is linear all
the way until the parameter value is 0.
= The models learned with an L1 regularization tend to
be much sparser than the L2 case.

= The strength depends on the hyper-parameter 3 .

Learning Undirected Graphs

= The likelihood function
Learning parameters
Collective classification with HMM, MEMM, CRF
= Generative vs. discriminative models
= Directed vs. undirected models
Learning with incomplete data
Learning with Priors
= Maximum A Priori (MAP) estimation
D= Learning with alternative objectives
= Pseudo likelihood objective
= Max-margin learning
» Structure Learning
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Why Alternative Objectives?

= The log-likelihood objective, on the case of a single
data instance &

10:£)=InP(£10)-InZ(0) =In I5(§|9)—In[z 5(§'|9)]
-

= MLE can be viewed as aiming to increase the distance
between the log of the un-normalized probability (log-
measure) of & and the aggregate of the measures of all
instances.

= Key difficulty: the 2" term involves a summation over
the exponentially many instances in Val(X).

= In MLE, we have to compute the log-likelihood in every
iteration (approximate inference)

= Alternative objectives

= Aim to increase the difference between the log-measure of the
data instance and a more tractable set of other instances
("Contrastive” objectives) 57

Pseudo-likelihood

= For a data instance &, using the chain rule, we can
write n
P(f) =H P(Xj | Xpyeees Xj—l)
j=1

= We can approximate this formulation by replacing
each term by the conditional probability x; given all
other variables x

P&) = [ TPOXG X Xty Xjgeee %)
j=1

= This approximation leads to the pseudolikelihood
objective: Given D with M training instances,

IPL(O:D)zﬁ > > | InP(x;[m]|x_;[m],0)

Each instance m Each variable |

28




Gradient of Pseudolikelihood

Pseudolikelihood objective:

L (0:D)== ¥ S InP(x,[m]| x,[m],6)

M Each instance m Each variable j

Each term is a log-conditional likelihood term over a
single var X; conditional on all the remaining vars

InP(xj|xj)=( Z@ifi[xj,uj]J—lnLZexp{ Z@ifi[xj',uj]H

i-X;eScope[f;] i-X;eScope[f;]

= The 2" term involves a summation over values on only a
single var X; (does not require inference at each step)

Widely used in vision, spatial statistics, etc.
Jointly concave over all parameters

Consistent estimator

= As the number of data instances M goes to infinity, with
probability 1, MLE of the log-likelihood objective ©* (the true
parameter) is a global optimum of the pseudolikelihood
objective 29

Pseudolikelihood vs Likelihood

= When the pseudolikelihood does not work well?

= Depends on the types of queries for which we intend to use the
model

= Psuedolikelihood objective is  Netflix collaborative filtering

a better training objective 2 2 Harry
Potter II

= If we plan to run queries
Harry
Potter I

where we condition on most of ...
Indiana
Jones
New user 1

the variables and query the
values of only a few, the
Probabilistic inference...
30

pseudolikelihood objective is a
very close match to the type of
predictions we would like to
make

« Any example?




Pseudolikelihood vs Likelihood

= Likelihood objective is a better training objective

» If a typical query involves most or all of the variables in
the model, the likelihood objective is more appropriate.

« E.g. Given E=image what is P(X=Iabels|E=image)="?

Image from the website of Prof Daphne Koller's lab
(http://dags.stanford.edu/projects/scenedataset.html)

Image from the website of Prof Daphne Koller’s Tab-
ttp://dags.stanford.edu/projects/scenedataset.html)

d-structured
Markov network

= However, even in cases where the likelihood is the more
appropriate objective, we may have to resort to
pseudolikelihood for computational reasons

= In many cases, this objective performs surprisingly well. 31

Max-margin Training

= Say that we want to use the model for predicting a
MAP assignment
= (E.g. image segmentation)
= In this setting, our training set consists of a set of pairs
D={(y[m],xIMD)}n-1,..m-
= Given an observation x[m], we want our learned model to
give the highest probability to y[m].
= In other words, we want the probability POS [m]|x[m]) to be
higher than any other probability Pg(y|x[m gfor yzy[m].
= To increase our confidence in the prediction, we would
like to increase the log-probability gap as much as
possible by increasing

In, (y[m] | [m) | max InP, (v x[m)

= This difference between the log-probability of the target
assignment y[m] and that of the “next best” assignment is
called the margin.

= The higher the margin, the more confidence the model is »




Handwriting Recognition Example

= Margin YY) )—Yy)
In, (y[m] | {m) | max InP, (v x[m) D © ©

CRF
= We want:
argmaxy O 'f(MEE,y) = ‘brace”
= Equivalently:
O "f(HEZM, “brace”) > O f(HE,“aaaaa") )
O 'f(HEMa , “brace”) > O 'f (XM ,"a2aab")
>a lot!

O "f(HEMa , “brace”) > O f(EME, “7z227")
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Learning Undirected Graphs

= The likelihood function
Learning parameters

Collective classification with HMM, MEMM, CRF
= Generative vs. discriminative models
= Directed vs. undirected models

Learning with incomplete data
Learning with Priors

= Maximum A Priori (MAP) estimation

= Learning with alternative objectives
:>- Structure Learning

= Structure learning via L1 regularization
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Structure Learning

= Start with atomic features
= Greedily conjoin features to improve score

= Problem: Need to re-estimate weights for each
new candidate

= Approximation: Keep weights of previous features
constant

38

Structure Learning via Regularization*

= Treat the structure learning problem as a parameter
estimation problem in a fully connected network

= L1 regularization to obtain a sparse representation

= Likelihood or pseudolikelihood objective
= Convex optimization problem

*Lee 07, Wainwright 07, Hoefling 09 39




