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Review: Metropolis-Hastings Algorithm

= Metropolis-Hastings algorithms
= You decide the transition probability T? — based on the
roposal distribution(Q ﬂ/:%jgg
= Acceptance probability “corrects” for the discrepancy between

Q andP
((_) R . P(X)TO (X x)} 2(..71/
(x—>x)=min|l, ————=~
P(X)T % (x — X')

= Advantage: more “global” move from one state to another
(compared to Gibbs sampling)
= The convergence of the M-H algorithm depends
crucially on the proposal distribution Q
= We need a proposal strategy that leads to a rapidly mixing
Markov chains (i.e. one that converges quickly to the
stationary distribution)
= Let's see a toy example from Dellaert et al.*
* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun. e—-

EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. 2




Revisit: Toy Model for Data Association

= Blue dots: variables, X; (i=1,2,3,4)
= Red dots: observations (values that we assign to variables)
Xi distance

e [[) if every a; has a different value
1

otherwise

— Let’s use M-H algorithm with
S pY4)

three proposal distribution

Proposal distributions for M-H

» Proposal distribution 1 (flip proposal)

= Simplest way of takinfg larger stepg in moving over the
state spaces (compared to Gibbs sampling)

= Randomly pick two variables, flip their assignments
@) ALE

= Attractive from a computational point of view, it has
the severe disadvantage of leading to s_I(Mmixi/ng
chains in many instances...

* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. 4




Proposal distributions for M-H

» Proposal distribution 2 (augmenting path)

= Suggest a move that is more likely to be accepted:
recursively resolving the conflict <

= Improving the convergence properties of the chain:
1. randomly pick one variable
2. sample it pretending that all observations are
available
3. pick the variable@whose assignment was taken
(conflict), goto step
4. loop until step 2 creates no conflict

— e soplc :

* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. 5

Proposal distributions for M-H

» Proposal distribution 3 (“smart” augmenting path)
= More aggressive way of moving to different states
Same as the previous one except for the highlighted

1. randomly pick one variable

2. sample it pretending that all observations are
available (excluding the current one) 4 X

3. pick the variable whose assignment was taken
(conflict), goto step 2

4. loop until step 2 creates no conflict .

* F. Dellaert, SM. Seitz, CE. Thorpe and S. Thrun.
EM, MCMC, and Chain Flipping for Structure from Motion with
Unknown Correspondence. Machine Learning 2003. 6




Let’s “See” How They Work

» Which proposal strategy is the most “aggressive” in
moving over the states??
= Converges the fastest to the stationary distribution <«

= Run the following Matlab scripts:
VisualMCMC2(10000, 0.7, 0.05);

% live animation of sampling

% parameters: num of samples, sigma, pause time after each
sample

Plot2;

% the first few lines of Plot2.m contain the parameters you may
want to play around with

= How to evaluate the rgence performance?
= Compare between , In terms of

Gl BY2Y). etc ,

Plots aenerated by “Plot2” %
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"w The convergerice? of the M-H algorithm
crucially on the proposal distribution Q

= We need a proposal strategy that leads to\s
Markov chains

0

apidly mixing




Review: Particle-based Inference

» General framework:
. Estimat from particles x[1],...,X[M] fron@
(target distribution) or W)

= Full particle methods

= Sampling methods
= Forward sampling, Likelihood weighting
= (Un-normalized/normalized) Importance sampling
= Markov chain Monte Carlo
=) - Gibbs sampling
— = Metropolis-Hastings algorithm
= Deterministic particle generation
= Upper/lower bounds of Ex(f) <&

= Distributional (Collapsed) particles
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Let’s now talk about a different kind
of approximate inference algorithm
that views inference as
optimization...

GLOBAL APPROXIMATE
INFERENCE
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General Approximate Inference

= Again, in many real-life applications using large and
dense networks, exact inference is infeasible...

= Strategy
= Define a class of simpler distributions@
= Search for a particular instance in(Q/that is “close” t@

= All methods we will discuss optimize-the same target function for
measuring the similarity betwee ('m

= Answer queries using inference in Q rather than P

= Before considering approximate inference methods,
let’s revisit exact inference based on message
passing algorithms

11

Cluster Graph

= A cluster graph K for factors F is an undirected
graph
= Nodes are associated with a subset of variables C..=U
= The graph is family preserving: each fact0eF IS

associated with one node@such that Scope[¢]=C;
= Each edge s associated with a m

= Clique tree: a cluster graph over factors F that
forms a tree and satisfies the running intersection

property

12




Cligue Tree Inference

= Running intersection property

Verify:
Jree'and family preserving J/

P(C) P(GI1.D) ’ P(LIG)
P(DIC) P(IL,S)

Message Passing: Belief Propagation

= Initialize the clique tree
= For each clique C; set (%) I1...¢
= For each edge C—C; set( ;<1

= While unset cliques exist (clique tree is calibrated)
= Select C—C,

@—©@
= Send message frow@

= Marginalize the chgue over the sepset‘<— ZC s,

= Update the belief a@

= Update the sepset at C—

14




Clique Tree Invariant

» Belief propagation can be viewed as

reparameterizing the joint distribytigrr—
= Upon calibration we showed P(U)
\AA~

= Initially this invariant holds since

= At each update step invariant is also maintained

= Message only changes m;and p;; SO most terms remain
unchanged

= We need to show =

'

Hij Hij

i

.. . \ /"i,j”i
= But this is exactly the message passing step 7i=——

—> Belief propagation re—parameterize@ at each step

15

Global Approximate Inference

=)= Inference as optimization

» Generalized Belief Propagation (GBP)
= Define algorithm
= Constructing cluster graphs
= Analyze approximation guarantees
= GBP as optimization

» Propagation with approximate messages (EP)
= Factorized messages
= Approximate message propagation

m Structured variational approximations

16




The Energy Functional

= Distance metric? — Many ways, but let's use relative

entropy (aka -diver encj Unwieldy for direct optimization:

Q an epr|C|t summation over all
(QIIP:)=Eq[In }

= Define the energy functlonal(E [Ing]+H, (V) )
= Then, we can show thatﬁ: _F

= Proof in K&F (page 385)

inimizing Q||P ) is equivalent to maX|m|zmg

(smce D(QlIPp=0)

possible assignments \ssignments of U

17

Inference as Optimization

= Basic idea: We can show that inference can be
viewed as maximizing the energy functional

F[Pe,Q]
= Define a distribution Q over (clique potentials
.“! !m F[P:,Q])to an equivalent factored form

= Show that if@naximizesm subject to constraints
" in which Q represents calibrated potentials, then there
exists factors (messages) that satisfy the inference
message passing equations
= Equivalent to belief propagation! ¢—

18




Defining Q
= Recall that throughout BP @

o JleamlC1
- H(C o #1(8i)

= If T is calibrated, D(Q||P @and sc@

maximized.

19

Factored Energy Functional
= Recall that the energy functional is defined as
@]{EQW@

peF

Q is defined as:
Hc‘a m[C]

(C,>C))eT 'uivi(si,j)

Q)=

s Define

) ZE [InO]+ZH (C)-

e factored energy functional as <—

Z Hﬁi,j (Sll)

Ci eT (Ci—Cj)eT

= Theorem: if Q is a set of calibrated potentials for
T, then F[P:,Q] = F[P.,Q] (K&F page 387)

20




Inference as Optimizatien

- Opt|m| ation task @'5 (€ Gy ccliquetreeT}

. Fin hat maximi subject o g-¢

\ v-v’.;,

v(C, -C. )ecllquetreeT

General optimization tool based

on ange multipliers

= The solution of the above optimization problem
satisfies (if_ex

Nz
@ x Zci—si.j 7Ti ( keNCi{j@
7i OC”’0(1_[,@1 5Hi)

5><5

= Suggests r cedure
= ldentical t ’
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Global Approximate Inference

= Inference as optimization
m Generalized Belief Propagation

:> = Define algorithm
= Constructing cluster graphs

= Analyze approximation guarantees
= GBP as optimization ¢
» Propagation with approximate messages
= Factorized messages
= Approximate message propagation
m Structured variational approximations

22




Revisit: Cligue Tree Inference

Verify:

= Rurining intersection property-

I@-and family preserving

co}-°

P(C)
P(DIC)

P(G|I1,D)

G,lI

P()
PESID

P(LIG)
PUJIL,S)

L&

P(H|G,J)
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Generalized Belief Propagation

Strategy:

Perform belief propagation in a cluster graph with loops

Simple

Cluster
graph

24




Generalized Belief Propagation

Strategy:

Perform belief propagation in a cluster graph with loops

= Inference may be incorrect: double
counting evidence

0.85

08

0.75

g' 07 ¢
_____Tiue posferior ¥~
0.6 /\
Cluster
0.55
o 5 Igra:ii;) 15 20 g raph N

Generalized Belief Propagation

Strategy:

Perform belief propagation in a cluster graph with loops

= Inference may be incorrect: double A,B A AD

counting evidence

= Unlike in BP on trees:
= Convergence is not guaranteed B,C c C,D

= Potentials in calibrated tree are not
guaranteed to be marginals in P

(G = PCS:,) Cluster
graph




Generalized Cluster Graph

= A cluster graph K for factors F is an undirected graph
= Nodes are associated with a subset of variables C,cU l

= The graph is family preserving: each factor ¢F is
associated with one node C; such that Scope[¢]cC;

= Each edge C;—C; is associated with a sepset S;; = C; " C;

= A generalized cluster graph K for factors F is an
undirected graph
= Nodes are associated with a subset of variable§ C.c
= The graph is family preserving: each facto

associated with one node C; such that =G
= Each edge s associated with a subset

27

Generalized Cluster Graph

= A generalized cluster graph obe
intersection property if for each X

there is h

d with X form a treg{[hat
clusters at contain X :

connected with.more tfhan one path("( A B A,D
B D

X
B,C C,D




Calibrated Cluster Graph

= A generalized cluster graph is calibrated if for ,fy
each edge C; - C; we have: ¢

@éfﬁﬂ %)

C.
()

= Weaker than in clique trees, since S;j Is a subset of the
intersection between C; and C;
= If a cluster graph satisfies the running intersection

property, then the marginal on any variable X is the
same in every cluster that contains X , 2

éTC;EC&]
X
G Efficient
Xl X13
2 2 X
3 X3

grid is exponential in n

Round of GBP is O(n) Cluster graph

30




Global Approximate Inference

» Inference as optimization

m Generalized Belief Propagation
= Define algorithm

|:> = Constructing cluster graphs

= Analyze approximation guarantees
= GBP as optimization

» Propagation with approximate messages
= Factorized messages
= Approximate message propagation

m Structured variational approximations

31

ting Cluster Graphs
ngg&rﬁuc Ing Clu P

= When constructing clique trees, all constructions
give the same result, but differ in computational

complexity

vaf

= In GBP, different cluster graphs can vary in both
computational complexity and approximation

quality (accuracy)

32




Transforming Pairwise MNs

= A pairwise Markov network over a graph H has:
= A set of node potentials :i=1,...n}
= A set of edge potential X X, X

= Example:

[ X31 H X1 X2 H X3 H X32:Xs3 J*[ X33 ]

33

Transforming Bayesian Networks

= Example:

Bethe approxmratk
= ~Large” cluster per each CPD

= Single nodes for each variable

= Connect node and | r if node in CPD
= > Graph obeys Ing intersection prope

34




Global Approximate Inference

» Inference as optimization

m Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
|:> = Analyze approximation guarantees <
» Propagation with approximate messages
= Factorized messages
= Approximate message propagation

m Structured variational approximations

35

Generalized Belief Propagation

s GBP maintains distribution

C. ‘@ C|]
‘ (ciecj)eK@(si,j)

= (Since message passing maintains invariance)

yvariance

36




Generalized Belief Propagation
= If GBP e '

conv s calibra
= Each subtree T)is calibrated with edge potentials
corresponding to marginals of P+(U)

37

Generalized Belief Propagation

= —> Calibrated graph potentials are not P.(U) marginals

AB

A B,C.D)
,[A Blx,[B,Clz,[C, D]
\/\A t,[Bla, 3[C]




Inference as Optimization
= Optimization task Q={m}{u,:(C.=C)) ecliquetreeT}

[—
. Find@that maximizes F'[P¢’,Q] subject to
= Y. V(C,—C;)ecliquetreeT
Ci=Si

General optimization tool based
zﬂ'i =1 Vci el on Lagrange multipliers
C;

= The solution of the above optimization problem
satisfies

é‘i_)j * ZCi—Si.J' ”io[erNci{j}ék_)i)
7 « ﬂ-io(HjeN 5]%)

Wiy =6,;%x6;

= Suggests iterative procedure

= Identical to belief propagation!
39

GBP as Optimization ,
= Optimization task Q=f{m}Au, (C -C,) celigietreeT }

. Find@that maximize subject to
VAT
Hij =C§”i v(C _Cj)e K F[P{-’. Q]
&/\_\/\A/L
> z=1 vC eK \/X‘/
C

A~N—
The solution of the above optimization problem
satisfies (i GBP coweret

0
Oj zcifsi,j d (erwcﬂj}gﬁij
0
7 * 7 (H]eNci 5]*)
Hij  =0,;%0

. Note:@is only a subset of intersection%tween C; and C;

= Iterative optimization procedure is GBP
40




GBP as Optimization

s Cligue_trees
« EPuQHE Pl
= Iterative procedure (BP) guaranteed to converge «—
= Convergence point resents marginal distributions of
g p ((N{FD g

-

A e —

Q] does not hold!
t

erative rocedure (GBP))not guaranteed to converge

= Convergence point does not represent marginal
distributions of P,
\NNno—

41

GBP in Practice

= Dealing with non-convergence €

= Often small portions of the network do not converge 3
= - stop inference and use current beliefs &—
= Use intelligent message passing scheduling €4—

. free reparameterization (TRP) selects entire trees, and ]
calibrates them while keeping all other beliefs fixed

= Focus attention on uncalibrated regions of the graph

42




Global Approximate Inference

» Inference as optimization
m Generalized Belief Propagation
= Define algorithm
= Constructing cluster graphs
= Analyze approximation guarantees
» Propagation with approximate messages
» Factorized messages <
= Approximate message propagation
m Structured variational approximations

43

Propagation w. Approximate Msgs

s General idea

= Perform BP (or GBP) as befor ropagate
messages that are onlyl approximate
= Modular approach

= General inference scheme remains the same <—

= Can plug in many different approximate message
computations

44




Factorized Messages

= Keep internal structure of the clique tree cliques

= Calibration involves sending messages that are
joint over three variables S §. T
= Idea: simplify messages using factored
representation =
= Example: ¢, ,

v )

;Xi X13

i(i X23
X Xa3

232/

Markov network Clique tree 45
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