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Lecture 4 – Apr 6, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Undirected Graphical Models

Readings: K&F 4.1, 4.2, 4.3, 4.4

Bayesian Network Representation
Directed acyclic graph structure

Conditional parameterization
Independencies in graphs
From distribution to BN graphs

Conditional probability distributions (CPDs)
Table
Deterministic
Context-specific (Tree, Rule CPDs)
Independence of causal influence (Noisy OR, GLMs)
Continuous variables
Hybrid models
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The Misconception Example
Four students get together in pairs to work on HWs: 

Alice, Bob, Charles, Debbie
Only the following pairs meet: (A&B), (B&C), (C&D), (D&A) 

3

C

A

BD

Let’s say that the prof accidentally misspoke in class
Each student may subsequently have figured out the problem.
In subsequent study pairs, they may transmit this newfound 
understanding to their partners.

Consider 4 binary random variables
A, B, C, D: whether the student has the misconception or not.

Independence assumptions?

Can we find the P-map for these?

Reminder: Perfect Maps
G is a perfect map (P-map) for P if I(P)=I(G)

Does every distribution have a P-map?
No: some structures cannot be represented in a BN

Independencies in P: (A⊥D | B, C) and (B⊥C | A, D)

D

A

BC

(B⊥C | A,D) does not hold

DA

BC

(A⊥D) also holds
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Representing Dependencies
(A⊥D | B,C) and (B⊥C | A,D)

Cannot be modeled with a Bayesian network.
Can be modeled with an undirected graphical models 
(Markov networks).
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Undirected Graphical Models (Informal)
Nodes correspond to random variables
Edges correspond to direct probabilistic interaction

An interaction not mediated by any other variables in the network.

How to parameterize?

C

A

BD

A D π1[A,C]

a0 d0 100

a0 d1 1

a1 d0 1

a1 d1 100

A B π2[A,B]

a0 b0 30

a0 b1 5

a1 b0 1

a1 b1 10

C D π3[C,D]

c0 d0 1

c0 d1 100

c1 d0 100

c1 d1 1

B C π4[B,C]

b0 c0 100

b0 c1 1

b1 c0 1

b1 c1 1000

Local factor models are 
attached to sets of nodes

Factor elements are positive

Do not have to sum to 1

Represent affinities, 
compatibilities
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Undirected Graphical Models (Informal)
Represents joint distribution

Unnormalized factor

Probability

Partition function

As undirected graphical models represent joint 
distributions, they can be used for answering queries.

D

A

BC
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Undirected Graphical Models Blurb
Useful when edge directionality cannot be assigned

Simpler interpretation of structure
Simpler inference
Simpler independency structure

Harder to learn parameters/structures

We will also see models with combined directed and 
undirected edges

Markov networks
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Markov Network Structure
Undirected graph H

Nodes X1,…,Xn represent random variables

H encodes independence assumptions
A path X1-X2-…-Xk is active if none of the Xi variables along 
the path are observed
X and Y are separated in H given Z if there is no active 
path between any node x∈X and any node y∈Y given Z

Denoted sepH(X;Y|Z)

B

C

A DD ⊥ {A,C} | B

Global independencies associated with H: 
I(H) = {(X⊥Y|Z) : sepH(X;Y|Z)} 9

Relationship with Bayesian Network
Bayesian network

Local independencies → Independence by d-separation (global)

Markov network 
Global independencies → Local independencies

Can all independencies encoded by Markov networks be 
encoded by Bayesian networks?

No, counter example – (A⊥B | C,D) and (C⊥D | A,B)

Can all independencies encoded by Bayesian networks be 
encoded by Markov networks?

No, immoral v-structures (explaining away)

Markov networks encode monotonic independencies
If sepH(X;Y|Z) and Z⊆Z’ then sepH(X;Y|Z’) 
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Markov Network Factors
A factor is a function from value assignments of a set 
of random variables D to real positive numbers  ℜ+

The set of variables D is the scope of the factor

Factors generalize the notion of CPDs
Every CPD is a factor (with additional constraints)

Z

X

YW

X W π1[X,W]

x0 w0 100

x0 w1 1

x1 w0 1

x1 w1 100

X Y π2[X,Y]

x0 y0 30

x0 y1 5

x1 y0 1

x1 y1 10

11

Factors and Joint Distribution
Can we represent any joint distribution by using 
only factors that are defined on edges?

No!  Compare # of parameters
Example: n binary RVs

Joint distribution has 2n-1 independent parameters

Markov network with edge factors has         parameters⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

4
n

B

D

A

C

E
F

G

Edge parameters: 4⋅(7C2)=84

Needed: 27-1 = 127!

Factors introduce constraints on joint distribution
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Factors and Graph Structure
Are there constraints imposed on the network structure 
H by a factor whose scope is D?

Hint 1: think of the independencies that must be satisfied
Hint 2: generalize from the basic case of |D|=2

The induced subgraph over D must be a clique (fully connected)
Why?  otherwise two unconnected variables may be independent 

by blocking the active path between them, contradicting the 
direct dependency between them in the factor over D

cliques

X3

X1

X2X4

X1,X2,X3,X4 D[x1,x2,x3,x4]

(F,F,F,F) 100

(F,F,F,T) 5

(F,F,TF) 3

(F,F,T,T) 100

Markov Network Factors: Examples

C

A

DB

C

A

DB

Maximal cliques
{A,B}
{B,C}
{C,D}
{A,D}

Maximal cliques
{A,B,C}
{A,C,D}

CSE 515 – Statistical Methods – Spring 2011 14



8

Markov Network Distribution
A distribution P factorizes over H if it has:

A set of subsets D1,...Dm where each Di is a complete 
(fully connected) subgraph in H
Factors π1[D1],...,πm[Dm] such that

Z is called the partition function
P is also called a Gibbs distribution over H

∏== ][1),...,(1),...,( 11 iinn Z
XXf

Z
XXP Dπ

∏= ][),...,( 1 iinXXf Dπ

∑∏∑ ==
nn XX

ii
XX

nXXfZ
,...,,...,

1
11

][),...,( Dπ

where un-normalized factor:
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Pairwise Markov Networks
A pairwise Markov network over a graph H has:

A set of node potentials {π[Xi]:i=1,...n}
A set of edge potentials {π[Xi,Xj]: Xi,Xj∈H}

Example:

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34
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Logarithmic Representation
We represent energy potentials by applying a log 
transformation to the original potentials

π[D] = exp(-ε[D]) where ε[D] = -ln π[D]
Any Markov network parameterized with factors can be 
converted to a logarithmic representation
The log-transformed potentials can take on any real value
The joint distribution decomposes as

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

m

i
iin Z

XXP
1

1 ][exp1),...,( Dε

Log P(X) is a 
linear function.
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I-Maps and Factorization
Independency mappings (I-map)

I(P) – set of independencies (X ⊥ Y | Z) in P
I-map – independencies by a graph is a subset of I(P)

Bayesian Networks
Factorization and reverse factorization theorems

G is an I-map of P iff P factorizes as

Markov Networks
Factorization and reverse factorization theorems

H is an I-map of P iff P factorizes as

∏
=

=
n

i
iin XPaXPXXP

1
1 ))(|(),...,(

∏= ][1),...,( 1 iin Z
XXP Dπ
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Reverse Factorization
H is an I-map of P

Proof:
Let X,Y,W be any three disjoint sets of 
variables such that W separates X and Y in H
We need to show (X⊥Y|W)∈I(P)

Case 1: X∪Y∪W=U (all variables)
As W separates X and Y there are no direct edges 
between X and Y

any clique in H is fully contained in X∪W or Y∪W
Let IX be subcliques in X∪W and IY be subcliques in 
Y∪W (not in X∪W)

(X⊥Y|W)∈I(P)

∏= ][1),...,( 1 iin Z
XXP Dπ

),(),(1][][1),...,( 1 WYWXDD
YX

gf
ZZ

XXP
Ii

ii
Ii

iin == ∏∏
∈∈

ππ
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: ::

Reverse Factorization
H is an I-map of P

Proof:
Let X,Y,W be any three disjoint sets of 
variables such that W separates X and Y in H
We need to show (X⊥Y|W)∈I(P)

Case 2: X∪Y∪W⊂U (all variables)
Let S=U-(X∪Y∪W)
S can be partitioned into two disjoint sets S1 and 
S2 such that W separates X∪S1 and Y∪S2 in H
From case 1, we can derive (X,S1⊥Y,S2|W)∈I(P)
From decomposition of independencies 

(X⊥Y|W)∈I(P)

∏= ][1),...,( 1 iin Z
XXP Dπ
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Factorization
If H is an I-map of P then

Holds only for positive distributions P
Hammerly-Clifford theorem

Defer proof  

∏= ][1),...,( 1 iin Z
XXP Dπ
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Relationship with Bayesian Network
Bayesian Networks

Semantics defined via local independencies IL(G).
Global independencies induced by d-separation
Local and global independencies equivalent since one 
implies the other

Markov Networks
Semantics defined via global separation property I(H)
Can we define the induced local independencies?

We show two definitions (call them “Local Markov assumptions”)
All three definitions (global and two local) are equivalent only for 
positive distributions P
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Pairwise Independencies
Every pair of disconnected nodes are separated given 
all other nodes in the network

Formally: IP(H) = { ( X⊥Y | U - {X,Y} ) : X—Y∉H}

D

A

BC

Example:

(A⊥D | B,C,E)

(B⊥C | A,D,E)

(D⊥E | A,B,C)

E
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Local Independencies
Every node is independent of all other nodes given its 
immediate neighboring nodes in the network

Markov blank of X, MBH(X)

Formally: IL(H) = { (X⊥U-{X}-MBH(X) | MBH(X)) : X∈H}

Example:

(A⊥D | B,C,E)

(B⊥C | A,D,E)

(C⊥B | A,D,E)

(D⊥E,A | B,C)

(E⊥D | A,B,C)

D

A

BC

E

CSE 515 – Statistical Methods – Spring 2011 24



13

Relationship Between Properties
Let I(H) be the global separation independencies
Let IL(H) be the local (Markov blanket) independencies
Let IP(H) be the pairwise independencies

For any distribution P:
I(H) IL(H)

The assertion in IL(H), that a node is independent of all other nodes 
given its neighbors, is part of the separation independencies since 
there is no active path between a node and its non-neighbors given 
its neighbors

IL(H) IP(H)
Follows from the monotonicity of independencies in Markov 
networks (if (X⊥Y|Z) and Z⊆Z’ then (X⊥Y|Z’))
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Relationship Between Properties
Let I(H) be the global separation independencies
Let IL(H) be the local (Markov blanket) independencies
Let IP(H) be the pairwise independencies

For any positive distribution P:
IP(H) I(H)

Proof relies on intersection property for probabilities
(X⊥Y|Z,W) and (X⊥W|Z,Y) (X⊥Y,W|Z)
which holds in general only for positive distributions
Details on the textbook

Thus, for positive distributions
I(H) ↔ IL(H) ↔ IP(H)

How about a non-positive distribution?
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The Need for Positive Distribution
Let P satisfy

A is uniformly distributed
A=B=C

P satisfies IP(H)
(B⊥C|A), (A⊥C|B)
(since each variable determines all others)

P does not satisfy IL(H)
(C⊥A,B) needs to hold according to IL(H) but does not 
hold in the distribution

A

B

C
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Constructing Markov Network for P
Goal: Given a distribution, we want to construct a 
Markov network which is an I-map of P

Complete (fully connected) graphs will satisfy but 
are not interesting

Minimal I-maps: A graph G is a minimal I-Map for 
P if:

G is an I-map for P
Removing any edge from G renders it not an I-map

Goal: construct a graph which is a minimal I-map 
of P
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Constructing Markov Network for P
If P is a positive distribution, then I(H)↔IL(H)↔IP(H)

Thus, sufficient to construct a network that satisfies IP(H)

Construction algorithm
For every (X,Y) add edge if (X⊥Y|U-{X,Y}) does not hold in P

Theorem: network is minimal and unique I-map
Proof:

I-map follows since IP(H) by construction and I(H) by equivalence
Minimality follows since deleting an edge implies (X⊥Y|U-{X,Y}) 
But, we know by construction that this does not hold in P since we 
added the edge in the construction process
Uniqueness follows since any other I-map has at least these edges 
and to be minimal cannot have additional edges
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Constructing Markov Network for P
If P is a positive distribution then 

I(H)↔IL(H)↔IP(H)
Thus, sufficient to construct a network that satisfies IL(H)

Construction algorithm
Connect each X to every node in the minimal set Y s.t.: 
{(X⊥U-{X}-Y|Y) : X∈H}

Theorem: network is minimal and unique I-map
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Markov Network Parameterization
Markov networks have too many degrees of 
freedom

A clique over n binary variables has 2n parameters but 
the joint has only 2n-1 parameters
The network A—B—C has clique {A,B} and {B,C}

Both capture information on B which we can choose
where we want to encode (in which clique)
We can add/subtract between the cliques

We can come up with infinitely many sets of factor 
values that lead to the same distribution

Need: conventions for avoiding ambiguity in 
parameterization

Can be done using a canonical parameterization (see 
K&F 4.4.2.1)

A

B

C
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Factor Graphs
From the Markov network structure we do not know 
whether parameterization involves maximal cliques or 
edge potentials

Example: fully connected graph may have pairwise potentials 
or one large (exponential) potential over all nodes

Solution: Factor Graphs
Undirected graph
Two types of nodes

Variable nodes
Factor nodes

Parameterization
Each factor node is associated with exactly one factor
Scope of factor are all neighbor variables of the factor node
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Factor Graphs
Example

Exponential (joint) parameterization
Pairwise parameterization

A

B C

A

B C

VABC

Factor graph for
joint parameterization

A

B C

VAB VAB

VAB

Factor graph for
pairwise  parameterization

Markov network
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Local Structure
Factor graphs still encode complete tables

A feature φ[D] on variables D is an indicator function 
that for some y∈D:

A distribution P is a log-linear model over H if it has
Features φ1[D1],...,φk[Dk] where each Di is a complete 
subgraph in H
A set of weights w1,...,wk such that

⎩
⎨
⎧ =

=
otherwise0

when1
][

w x
Dφ

[ ]∑ =
−=

k

i iin w
Z

XXP
11 ][exp1),...,( iDφ
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Z

X

YW
X W π1[X,W]

x0 w0 100

x0 w1 1

x1 w0 1

x1 w1 100
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Feature Representation
Several features can be defined on one clique

any factor can be represented by features, where in 
the most general case we define a feature and weight for 
each entry in the factor 

Log-linear model is more compact for many 
distributions especially with large domain 
variables 

Representation is intuitive and modular
Features can be modularly added between any 
interacting sets of variables
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Markov Network Parameterizations
Choice 1: Markov network

Product over potentials
Right representation for discussing independence queries

Choice 2: Factor graph
Product over graphs
Useful for inference (later)

Choice 3: Log-linear model
Product over feature weights
Useful for discussing parameterizations
Useful for representing context specific structures

All parameterizations are interchangeable
36
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Domain Application: Vision
The image segmentation problem

Task: Partition an image into distinct parts of the scene
Example: separate water, sky, background
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Markov Network for Segmentation
Grid structured Markov network
Random variable Xi corresponds to pixel i

Domain is {1,...K}
Value represents region assignment to pixel i

Neighboring pixels are connected in the network
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X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34
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Markov Network for Segmentation
Appearance distribution

wi
k – extent to which pixel i “fits” region k (e.g., 

difference from typical pixel for region k)
Introduce node potential exp(-wi

k1{Xi=k})

Edge potentials
Encodes contiguity preference by edge potential
exp(λ1{Xi=Xj}) for λ>0

39

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

Appearance 
distribution

Contiguity 
preference

Markov Network for Segmentation

Solution: inference
Find most likely assignment to Xi variables

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

Appearance 
distribution

Contiguity 
preference
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Example Results
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Result of segmentation using node 
potentials alone, so that each pixel is 
classified independently Result of segmentation using a 

pairwise Markov network encoding 
interactions between adjacent 
pixels

Summary: Markov Network Representation
Independencies in graph H

Global independencies I(H) = {(X⊥Y|Z) : sepH(X;Y|Z)}
Local independencies IL(H) = { (X⊥U-{X}-MBH(X) | MBH(X)) : X∈H}
Pairwise independencies IP(H) = { ( X⊥Y | U - {X,Y} ) : X—Y∉H}
For any positive distribution P, they are equivalent.

(Reverse) factorization theorem: I-map ↔ factorization
Markov network factors

Has to encompass cliques
Maximal cliques, edge factors

Log-linear model
Features instead of factors

Pairwise Markov network
Node/ edge potentials
Application in vision (image segmentation)

What next?
Constructing Markov networks from Bayesian networks
Hybrid models (e.g. Conditional Random Fields)
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