Readings: K&F 4.1, 4.2, 4.3,4.4

‘ Undirected Graphical Models

Lecture 4 — Apr 6, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Bayesian Network Representation

= Directed acyclic graph structure
= Conditional parameterization
= Independencies in graphs
= From distribution to BN graphs

= Conditional probability distributions (CPDs)
= Table
= Deterministic
Context-specific (Tree, Rule CPDs)
Independence of causal influence (Noisy OR, GLMSs)
Continuous variables
Hybrid models
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The Misconception Example

= Four students get together in pairs to work on HWs:
Alice, Bob, Charles, Debbie

= Only the following pairs meet: (A&B), (B&C), (C&D), (D&A)

= Let’s say that the prof accidentally misspoke in class
= Each student may subsequently have figured out the problem.

= In subsequent study pairs, they may transmit this newfound
understanding to their partners.

= Consider 4 binary random variables
= A, B, C, D: whether the student has the misconception or not.

= Independence assumptions? e
= Can we find the P-map for these? e

Reminder: Perfect Maps
= G is a perfect map (P-map) for P if I(P)=I1(G)

= Does every distribution have a P-map?

= NO: some structures cannot be represented in a BN
« IndependenciesinP: (ALD | B,C)and (BLC | A, D)

(BLC | A,D) does not hold (A L D) also holds
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Representing Dependencies

= (ALD|B,C)and (BLLC | A,D)
= Cannot be modeled with a Bayesian network.

= Can be modeled with an undirected graphical models
(Markov networks).
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Undirected Graphical Models (Informal)

= Nodes correspond to random variables

= Edges correspond to direct probabilistic interaction
= An interaction not mediated by any other variables in the network.

= How to parameterize?
A D |m[AC] A B |[m,[AB]

s Local factor models are @ b° |30
a® d! bt |5

attached to sets of nodes |, 4 b |1
= Factor elements are positive |a! d bt | 10

= Do not have to sumto 1

= Represent affinities,
compatibilities

¢c b c |mIB.C]
c c | 100
co  dt 1
¢t |1
ct do c0 1
¢ dt |1 bt ¢! | 1000
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Undirected Graphical Models (Informal)

= Represents joint distribution
= Unnormalized factor

F(a,b,c,d) =z[a,b]z,[a,c]z,[b,d]z,[c,d] Q

= Probability e‘e
P(a,b,c,d) = %72’1[8., blz,[a,c]z,[b,d]z,[c,d] Q

= Partition function

Z =Y zlablz[a clrb dlz,[c,d]

ab,cd

= As undirected graphical models represent joint
distributions, they can be used for answering queries.
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Undirected Graphical Models Blurb

Useful when edge directionality cannot be assigned

Simpler interpretation of structure
= Simpler inference
= Simpler independency structure

Harder to learn parameters/structures

We will also see models with combined directed and
undirected edges

Markov networks
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Markov Network Structure

= Undirected graph H
= Nodes X,,...,X, represent random variables

= H encodes independence assumptions

= A path X;-X,-...-X, is active if none of the X; variables along
the path are observed

= X and Y are separated in H given Z if there is no active
path between any node xeX and any node yeY given Z
= Denoted sep,(X;Y|2)

DL{AC}|B e e Q
©

Global independencies associated with H:
I(H) = {(XLY|Z) : sep,(X;Y|2)} 9

Relationship with Bayesian Network

= Bayesian network
= Local independencies - Independence by d-separation (global)

= Markov network
= Global independencies - Local independencies

= Can all independencies encoded by Markov networks be
encoded by Bayesian networks?
= No, counter example — (ALB | C,D) and (C LD | A,B)

= Can all independencies encoded by Bayesian networks be
encoded by Markov networks?
= No, immoral v-structures (explaining away)

= Markov networks encode monotonic independencies
s If sepy(X;Y|Z) and ZcZ’ then sep,(X;Y|Z")
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Markov Network Factors

= A factor is a function from value assignments of a set
of random variables D to real positive numbers R*
= The set of variables D is the scope of the factor

= Factors generalize the notion of CPDs
= Every CPD is a factor (with additional constraints)

X W | m[X,W] X Y [m[X)Y]
X0 wO | 100 X0 y0 |30
X0 wl|1 xX0 oyl |5

xtowo |1 ° xtoy0 |1
xt w! | 100 xt yl |10

W

11

Factors and Joint Distribution

= Can we represent any joint distribution by using
only factors that are defined on edges?
= No! Compare # of parameters
= Example: n binary RVs
= Joint distribution has 2"-1 independent parameters

n
= Markov network with edge factors has 4(2j parameters

Needed: 27-1 = 127!

Edge parameters: 4-(,C,)=84

= Factors introduce constraints on joint distribution
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Factors and Graph Structure

= Are there constraints imposed on the network structure
H by a factor whose scope is D?
= Hint 1: think of the independencies that must be satisfied
= Hint 2: generalize from the basic case of |D|=2

The induced subgraph over D must be a clique (fully connected)

Why? otherwise two unconnected variables may be independent
by blocking the active path between them, contradicting the
direct dependency between them in the factor over D

X1,X2,X3,X4 | D[x1,x2,x3,x4] CI I q ues

(FRFRF) 100 \

(FRRERT) 5
(RETF) 3
(RETT) 100

Markov Network Factors: Examples

Maximal cliques Maximal cliques
« {AB} = {AB,C}

« {B,C} « {A,C,D}

= {C,D}

« {AD}
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Markov Network Distribution

m A distribution P factorizes over H if it has:

= A set of subsets D,,...D,, where each D, is a complete
(fully connected) subgraph in H

= Factors m,[D,],...,7,[D,,] such that

P(X, x,):%f(x1 ..... xg:%]‘[ﬂi[oi]

where un-normalized factor: f(X,....X,)=[]=[D/]

= Z is called the partition function
= P is also called a Gibbs distribution over H
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Pairwise Markov Networks

= A pairwise Markov network over a graph H has:
= A set of node potentials {=[X]:i=1,...n}
= A set of edge potentials {n[X;,X]: X;,X;eH}

= Example:

CSE 515 — Statistical Methods — Spring 2011 16




Logarithmic Representation

= We represent energy potentials by applying a log
transformation to the original potentials
= 1[D] = exp(-¢[D]) where ¢[D] = -In n[D]
= Any Markov network parameterized with factors can be
converted to a logarithmic representation
= The log-transformed potentials can take on any real value
= The joint distribution decomposes as

p(xl,...,xn):%exp{—_}m]a[Di]}

Log P(X) is a
linear function.
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I-Maps and Factorization

= Independency mappings (I-map)
= I(P) — set of independencies (X LY | 2Z2)inP
= |-map — independencies by a graph is a subset of I1(P)

= Bayesian Networks
= Factorization and reverse factorization theorems

= Markov Networks
= Factorization and reverse factorization theorems
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Reverse Factorization
B P(Xli----xn)=%Hﬂi[Di]9 His an I-map of P

= Proof:
= Let X,Y,W be any three disjoint sets of
variables such that W separates X and Y in H

= We need to show (X LY|W)el(P)

= Case 1: XuYUW=U (all variables)

= As W separates X and Y there are no direct edges
between X and Y
- any clique in H is fully contained in XUW or YOUW

= Let Iy be subcliques in XuW and I, be subcliques in
YUW (not in XUW)
> P(X,u X)) = [TAIDI[[#IDI =5 F(XW)g(¥ W)

iely iely

> (X LY|W)el(P)
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Reverse Factorization
= P(X,...X,)= > [[m[D]> H s an I-map of P

= Proof:
= Let X,Y,W be any three disjoint sets of
variables such that W separates X and Y in H

= We need to show (X LY|W)el(P)

= Case 2: XUYUWCcU (all variables)
» Let S=U-(XUYUW)

= S can be partitioned into two disjoint sets S; and
S, such that W separates XusS, and YUS, in H

= From case 1, we can derive (X,S; LY,S,|W)el(P)
= From decomposition of independencies
> (XLY|W)el(P)
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Factorization

= If His an I-map of P then P(Xl,...,xn)zénm[Di]

= Holds only for positive distributions P
= Hammerly-Clifford theorem

= Defer proof
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Relationship with Bayesian Network

= Bayesian Networks
= Semantics defined via local independencies I, (G).
= Global independencies induced by d-separation

= Local and global independencies equivalent since one
implies the other

= Markov Networks
= Semantics defined via global separation property I(H)

= Can we define the induced local independencies?
= We show two definitions (call them “Local Markov assumptions”™)

= All three definitions (global and two local) are equivalent only for
positive distributions P
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Pairwise Independencies

= Every pair of disconnected nodes are separated given
all other nodes in the network

= Formally: I,(H) = { (XLY | U-{X,Y}) : X—Y¢H}

Example:

(ALD|B,C,E)
(BLC|AD,E)
(DLE]|AB,C)
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Local Independencies

= Every node is independent of all other nodes given its
Immediate neighboring nodes in the network

Markov blank of X, MB(X)

= Formally: I,(H) = { (XLU-{X}-MB,(X) | MB,(X)) : XeH}

Example:

(ALD|B,C,E)
(BLC|AD,E)
(CLB]|AD,E)
(DLEA|B,C)
(ELD]|AB,C)
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Relationship Between Properties

Let I(H) be the global separation independencies
Let I (H) be the local (Markov blanket) independencies
Let I,(H) be the pairwise independencies

For any distribution P:
= I(H) 2> I,(H)
= The assertion in 1, (H), that a node is independent of all other nodes
given its neighbors, is part of the separation independencies since

there is no active path between a node and its non-neighbors given
its neighbors

= 1.(H) > 1p(H)
= Follows from the monotonicity of independencies in Markov
networks (if (XL Y|Z) and ZcZ’ then (X 1Y]|Z"))
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Relationship Between Properties

Let I(H) be the global separation independencies
Let I (H) be the local (Markov blanket) independencies
Let I,(H) be the pairwise independencies

For any positive distribution P:
= I(H) =2 I(H)
= Proof relies on intersection property for probabilities
(XLY]|Z,W) and (X LW]|Z,Y) > (X LY,W]2)
which holds in general only for positive distributions
= Details on the textbook

= Thus, for positive distributions
= I(H) & I, (H) < 1,(H)

= How about a non-positive distribution?
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The Need for Positive Distribution

= Let P satisfy H
= A is uniformly distributed
s A=B=C

= P satisfies 1,(H)
= (BLLCJA), (ALCI|B)
(since each variable determines all others)

@ @&

= P does not satisfy I, (H)

= (C_LA,B) needs to hold according to I, (H) but does not
hold in the distribution
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Constructing Markov Network for P

= Goal: Given a distribution, we want to construct a
Markov network which is an I-map of P

= Complete (fully connected) graphs will satisfy but
are not interesting

= Minimal I-maps: A graph G is a minimal 1-Map for
P if:
= Gisan I-map for P
= Removing any edge from G renders it not an I-map

= Goal: construct a graph which is a minimal I-map
of P
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Constructing Markov Network for P

= If P is a positive distribution, then I(H)< 1 (H)<>1,(H)
= Thus, sufficient to construct a network that satisfies 1,(H)

= Construction algorithm
= For every (X,Y) add edge if (X LY]U-{X,Y}) does not hold in P

s Theorem: network is minimal and unique I-map

= Proof:
= I-map follows since 1,(H) by construction and I(H) by equivalence
« Minimality follows since deleting an edge implies (X L Y| U-{X,Y})
But, we know by construction that this does not hold in P since we
added the edge in the construction process
= Uniqueness follows since any other I-map has at least these edges
and to be minimal cannot have additional edges
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Constructing Markov Network for P

= If P is a positive distribution then
I(H) 1 (H)15(H)

= Thus, sufficient to construct a network that satisfies I, (H)

= Construction algorithm
= Connect each X to every node in the minimal set Y s.t.:
{(XLU-{X}-Y|Y) : XeH}

» Theorem: network is minimal and unique I-map
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Markov Network Parameterization

= Markov networks have too many degrees of
freedom
= A clique over n binary variables has 2" parameters but
the joint has only 2"-1 parameters
= The network A—B—C has clique {A,B} and {B,C} Q

= Both capture information on B which we can choose
where we want to encode (in which clique)

= We can add/subtract between the cliques 9

= We can come up with infinitely many sets of factor
values that lead to the same distribution E

= Need: conventions for avoiding ambiguity in
parameterization

= Can be done using a canonical parameterization (see
K&F 4.4.2.1)
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Factor Graphs

= From the Markov network structure we do not know
whether parameterization involves maximal cliques or
edge potentials

= Example: fully connected graph may have pairwise potentials
or one large (exponential) potential over all nodes

= Solution: Factor Graphs

= Undirected graph

= Two types of nodes
« Variable nodes
« Factor nodes

= Parameterization
= Each factor node is associated with exactly one factor
= Scope of factor are all neighbor variables of the factor node
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Factor Graphs

= Example
= Exponential (joint) parameterization
= Pairwise parameterization

Yy ¥
Vas | A Vs
- Markov network \‘\ %
Vaec Vag
Factor graph for Factor graph for
joint parameterization pairwise parameterization
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Local Structure
= Factor graphs still encode complete tables

m [X,W]

@ D
1

1 ©

100

X

£33 3|2

X
X
X1
X

= A feature ¢[D] on variables D is an indicator function
that for some yeD: 1 whenx=w
¢[D] ={

0 otherwise

= A distribution P is a log-linear model over H if it has

= Features ¢,[D,],...,4,[D,] where each D;is a complete
subgraph in H
= A set of weights wy,...,w, such that

P(Xyey X)) = %exp[— Z:(lei¢i[Di]]
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Feature Representation

= Several features can be defined on one clique

-> any factor can be represented by features, where in
the most general case we define a feature and weight for
each entry in the factor

= Log-linear model is more compact for many
distributions especially with large domain
variables

= Representation is intuitive and modular

= Features can be modularly added between any
interacting sets of variables
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Markov Network Parameterizations

Choice 1: Markov network
= Product over potentials
= Right representation for discussing independence queries

Choice 2: Factor graph
= Product over graphs
= Useful for inference (later)

Choice 3: Log-linear model

= Product over feature weights

= Useful for discussing parameterizations

= Useful for representing context specific structures

All parameterizations are interchangeable
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Domain Application: Vision

= The image segmentation problem
= Task: Partition an image into distinct parts of the scene
= Example: separate water, sky, background

CSE 515 — Statistical Methods — Spring 2011 37

Markov Network for Segmentation

= Grid structured Markov network
= Random variable X; corresponds to pixel i
= Domain is {1,...K}
= Value represents region assignment to pixel i
= Neighboring pixels are connected in the network
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Markov Network for Segmentation

= Appearance distribution
= WX — extent to which pixel i “fits” region k (e.g.,
difference from typical pixel for region k)
= Introduce node potential exp(-wk1{X.=k})
= Edge potentials
= Encodes contiguity preference by edge potential
exp(A1{X=X}) for A>0 Appearance J

distribution

X4 A g
24( Contiguity ’
Xon preference

39

Markov Network for Segmentation

Appearance
distribution

Contiguity
preference

= Solution: inference
= Find most likely assignment to X; variables
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Example Results

building

Result of segmentation using node
potentials alone, so that each pixel is
classified independently Result of segmentation using a

pairwise Markov network encoding
interactions between adjacent
pixels
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Summary: Markov Network Representation

= Independencies in graph H
= Global independencies I(H) = {(XLY|Z) : sepy(X;Y|2)}
= Local independencies I (H) = { (XLU-{X}-MB,(X) | MB4(X)) : XeH}
= Pairwise independencies I,(H) = { ( XLY | U - {X,Y}) : X—Yg¢H}
= For any positive distribution P, they are equivalent.
= (Reverse) factorization theorem: I-map <> factorization
= Markov network factors
= Has to encompass cliques
= Maximal cliques, edge factors
= Log-linear model
= Features instead of factors
» Pairwise Markov network
= Node/ edge potentials
= Application in vision (image segmentation)

= What next?
= Constructing Markov networks from Bayesian networks
= Hybrid models (e.g. Conditional Random Fields)
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