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Lecture 1 – Mar 28, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Introduction to 
Probabilistic Graphical Models

Readings: K&F 2.1, 2.2, 2.3, 3.1

Logistics
Teaching Staff

Instructor: Su-In Lee (suinlee@uw.edu, PAC 536) 
Office hours: Fri 9-10am or by appointment (PAC 536)

TA: Andrew Guillory (guillory@cs.washington.edu)
Office hours: Wed 1:30-2:20 pm or by appointment (PAC 216)

Course website
cs.washington.edu/515
Discussion group: course website

Textbook
(required) Daphne Koller and Nir Friedman, Probabilistic 
Graphical Models: Principles and Techniques, MIT Press
Various research papers (copies available in class)
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Course requirement
4 homework assignments (60% of final grade)

Theory / implementation exercises
First one goes out next Monday!
2 weeks to complete each
HW problems are long and hard

Please, please, please start early!

Late/collaboration policies are described on the website

Final exam (35%)
Date will be announced later.

Participation (5%)
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Probabilistic graphical models (PGMs)

One of the most exciting developments in machine 
learning (knowledge representation, AI, EE, Stats, …) 
in the last two decades…

Tool for representing complex systems and 
performing sophisticated reasoning tasks

Why have a model?
Compact and modular representation of complex systems
Ability to efficiently execute complex reasoning tasks
Make predictions
Generalize from particular problem

CSE 515 – Statistical Methods – Spring 2011 4



3

Probabilistic graphical models (PGMs)

Many classical probabilistic problems in statistics, 
information theory, pattern recognition, and 
statistical mechanics are special cases of the 
formalism

Graphical models provides a common framework
Advantage: specialized techniques developed in one field 
can be transferred between research communities

PGMs are a marriage between graph theory and 
probability theory

Representation: graph
Reasoning: probability theory
Any simple example?
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A simple example

We want to know/model whether our neighbor will 
inform us of the alarm being set off

The alarm can set off (A) if
There is a burglary (B)
There is an earthquake (E)

Whether our neighbor calls (N) 
depends on whether the alarm is set off (A)

“Variables” in this system
Whether alarm being set off (A); burglary (B); 
earthquake (E); our neighbor calls (N)
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A simple example
Variables

Earthquake (E), Burglary (B), Alarm (A), NeighborCalls (N)
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E B A N Prob.

F F F F 0.01

F F F T 0.04

F F T F 0.05

F F T T 0.01

F T F F 0.02

F T F T 0.07

F T T F 0.2

F T T T 0.1

T F F F 0.01

T F F T 0.07

T F T F 0.13

T F T T 0.04

T T F F 0.06

T T F T 0.05

T T T F 0.1

T T T T 0.05

24-1 independent 
parameters 

Probabilistic Inference
Task I Say that the alarm is set off (A=True), then how likely is it to get 
a call from our neighbor (N=True)?
Task II Given that my neighbor calls (N=True), how likely it is that a 
burglary occurred (B=True)?

A simple example
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Alarm

NeighborCalls

BurglaryEarthquake

A

E B F T

F F 0.99 0.01

F T 0.1 0.9

T F 0.3 0.7

T T 0.01 0.99

N

A F T

F 0.9 0.1

T 0.2 0.8

E

F T

0.9 0.1

8 independent 
parameters 

B

F T

0.7 0.3

Representation: graph
Intuitive data structure 

Reasoning
Probability theory
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Example Bayesian network
The “Alarm” network for monitoring intensive care 
patients

37 variables
509 parameters (full joint 237) 
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Representation: graphs
Intuitive data structure for modeling highly-interacting 
sets of variables

Compact representation
Explicit model of modularity

Data structure that allows for design of efficient general-
purpose algorithms
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Reasoning: probability theories
Well understood framework for modeling uncertainty

Partial knowledge of the state of the world
Noisy observations
Phenomenon not covered by our model
Inherent stochasticity

Clear semantics

Can be learned from data

11

PCWP CO

HRBP
HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

Probabilistic reasoning
This course covers:

Probabilistic graphical model (PGM) representation
Bayesian networks (directed graph)
Markov networks (undirected graph)

Answering queries in PGMs (“inference”)
What is the probability of X given some observations?
What is the most likely explanation for what is happening?

Learning PGMs from data (“learning”)
What are the right/good parameters/structure of the model?

Application & special topics
Modeling temporal processes with PGMs

Hidden Markov Models (HMMs) as a special case

Modeling decision-making processes
Markov Decision Processes (MDPs) as a special case
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7

Course outline
Week Topic Reading
1 Introduction, Bayesian network representation 2.1-3, 3.1

Bayesian network representation cont. 3.1-3
2 Local probability models 5

Undirected graphical models 4
3 Exact inference 9.1-4

Exact inference cont. 10.1-2
4 Approximate inference 12.1-3

Approximate inference cont. 12.1-3
5 Parameter estimation 17

Parameter estimation cont. 17
6 Partially observed data (EM algorithm) 19.1-3

Structure learning BNs 18
7 Structure learning BNs cont. 18

Partially observed data 19.4-5
8 Learning undirected graphical models 20.1-3

Learning undirected graphical models cont. 20.1-3
9 Hidden Markov Models TBD

HMMs cont. and Kalman filter TBD
10 Markov decision processes TBD

Application: 
recommendation systems

Given user preferences, suggest recommendations
Example: Amazon.com

Input: movie preferences of many users
Solution: model correlations between movie features

Users that like comedy, often like drama
Users that like action, often do not like cartoons
Users that like Robert Deniro films often like Al Pacino films
Given user preferences, can predict probability that new 
movies match preferences
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Diagnostic systems
Diagnostic indexing for home health site at microsoft
Enter symptoms recommend multimedia content
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Full of tasks that require reasoning under uncertainty

Many research areas in CS

Speech recognition

planning under uncertainty

computer vision

[Barnard et al]

[Guestrin et al]

evolutionary biology

[Friedman et al]

medical diagnosis

16

Modeling sensor data

[Guestrin et al]
[Fox et al]

Tracking and robot localization

HMM

Kalman filter

Bayesian network

Undirected 
graphical model

Dynamic Bayesian network
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Enjoy!

Probabilistic graphical models are having 
significant impact in science, engineering and 
beyond

This class should give you the basic foundation 
for applying PGMs and developing new methods

The fun begins …
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Today
Basics of probability

Conditional probabilities
Statistical independence
Random variable

Simple Bayesian networks
Two nodes make a BN
Naïve Bayes

Should be a review for everyone – Setting up 
notation for the class
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Sample spaces, events and probabilities
Probability

A degree of confidence that an “event” of an uncertain nature will occur.

Begin with a set Ω -- the sample space
Space of possible outcomes
e.g. if we consider dice, we might have a set Ω={1,2,3,4,5,6}
α∈Ω is a sample point / atomic event.

A probability space is a sample space with an assignment P(α) for 
every α∈Ω s.t.

0≤P(α)≤1
∑α P(α)=1
e.g. P(1)= P(2)= P(3)= P(4)= P(5) = P(6)=1/6

An event A is any subset of Ω
P(A) = ∑{α ∈ A}P(α)

E.g., P(die roll<4) = P(1)+ P(2)+P(3) = 0.5
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Conditional probabilities
Consider two events α and β,

e.g. α = getting admitted to the UW CSE, 
β = getting a job offer from Microsoft.

After learning that α is true, how do we feel about β?
P(β|α)

CSE 515 – Statistical Methods – Spring 2011 20
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Two of the most important rules of 
the quarter: 1. The chain rule
From the definition of the conditional distribution, 
we immediately see that 

P(α∩β)=P(α)P(β|α)

More generally: 
P(α1∩…∩αk)= P(α1) P(α2|α1)···P(αk|α1∩…∩αk-1)
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Two of the most important rules of 
the quarter: 2. Bayes rule
Another immediate consequence of the definition of 
conditional probability is: 

A more general version of Bayes’ rule, where all the 
probabilities are conditioned on some “background” 
event γ: 
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Most important concept of the 
quarter: a) Independence

α and β are independent, if P(β|α)=P(β)
Denoted P → (α ⊥ β)

Proposition: α and β are independent if and 
only if P(α∩β)=P(α)P(β) 
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Most important concept of the 
quarter: b) Conditional independence

Independence is rarely true, but conditionally…

α and β conditionally independent given γ if 
P(β|α∩γ)=P(β|γ)

P → (α ⊥ β | γ)

Proposition: P → (α ⊥ β | γ) if and only if 
P(α∩β |γ)=P(α |γ)P(β |γ) 
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Random variables
Probability distributions are defined for events

Events are complicated – so, let’s think about attributes
Age, Grade, HairColor

A random variable (such as Grade), is defined by a 
function that associates each outcome in Ω (each person) 
with a value.

Grade = A – shorthand for event {w∈Ω:fGrade(w)=A}
Grade = B – shorthand for event {w∈Ω:fGrade(w)=B}

:

Properties of a random variable X:
Val(X) = a set of possible values of random variable X
For discrete (categorical): ∑i=1,…,|Val(X)| P(X=xi) = 1
P(x)≥0
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Basic concepts for random variables
Atomic event: assignment x1,…,xn to X1,…,Xn

Conditional probability: P(Y|X)=P(X,Y)/P(X)
For all values x∈Val(X), y∈Val(Y)

Bayes rule: P(X|Y)=

Chain rule: 
P(X1,…,Xn) =

CSE 515 – Statistical Methods – Spring 2011 26



14

Joint distribution, marginalization

Two random variables – Grade & Intelligence

Marginalization – Compute marginal over single variable

CSE 515 – Statistical Methods – Spring 2011 27

Marginalization – the general case
Compute marginal distribution P(Xi) from joint 
distribution P(X1,…, Xi,…,Xn) :

CSE 515 – Statistical Methods – Spring 2011 28
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Today
Basics of probability

Conditional probabilities
Statistical independence
Random variable

Two nodes make a BN
Naïve Bayes

Should be a review for everyone – Setting up 
notation for the class
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Representing joint distributions

Random variables: X1,…,Xn

P is a joint distribution over X1,…,Xn

If X1,..,Xn binary, need 2n parameters to describe P

Can we represent P more compactly?
Key: Exploit independence properties

CSE 515 – Statistical Methods – Spring 2011 30
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Independent random variables 
If X1,…,Xn are independent then:

P(X1,…,Xn) = P(X1)…P(Xn)
O(n) parameters
All 2n probabilities are implicitly defined
Cannot represent many types of distributions

X and Y are conditionally independent given Z if
P(X=x|Y=y, Z=z) = P(X=x|Z=z) for all values x, y, z
Equivalently, if we know Z, then knowing Y does not 
change predictions of X
Notation: (X ⊥ Y | Z)
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Conditional parameterization
S = SAT score, Val(S) = {s0,s1}
I = Intelligence, Val(I) = {i0,i1}

I S P(I,S)

i0 s0 0.665

i0 s1 0.035

i1 s0 0.06

i1 s1 0.24

S

I s0 s1

i0 0.95 0.05

i1 0.2 0.8

I

i0 i1

0.7 0.3

P(S|I)P(I)P(I,S)

Joint parameterization Conditional parameterization

3 parameters 3 parameters

Alternative parameterization: P(S) and P(I|S)
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Conditional parameterization
S = SAT score, Val(S) = {s0,s1}
I = Intelligence, Val(I) = {i0,i1}
G = Grade, Val(G) = {g0,g1,g2}
Assume that G and S are independent given I
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Joint parameterization
2⋅2⋅3=12-1=11 independent parameters

Conditional parameterization has
P(I,S,G) = P(I)P(S|I)P(G|I,S) = P(I)P(S|I)P(G|I)
P(I) – 1 independent parameter
P(S|I) – 2⋅1 independent parameters
P(G|I) - 2⋅2 independent parameters
7 independent parameters

Naïve Bayes model
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Class variable C, Val(C) = {c1,…,ck}
Evidence variables X1,…,Xn

Naïve Bayes assumption: evidence variables 
are conditionally independent given C

Applications in medical diagnosis, text classification
Used as a classifier:

Problem: Double counting correlated evidence

∏
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Bayesian network (informal)
Directed acyclic graph G

Nodes represent random variables
Edges represent direct influences between random 
variables

Local probability models

I

S

I

S G

C

X1 XnX2
…

Naïve BayesExample 2Example 1
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Bayesian network (informal)
Represent a joint distribution

Specifies the probability for P(X=x)
Specifies the probability for P(X=x|E=e)

Allows for reasoning patterns
Prediction (e.g., intelligent high scores)
Explanation (e.g., low score not intelligent)
Explaining away (different causes for same effect 
interact)

I

S G

Example 2
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Bayesian network structure
Directed acyclic graph G

Nodes X1,…,Xn represent random variables

G encodes local Markov assumptions
Xi is independent of its non-descendants given its 
parents
Formally: (Xi ⊥ NonDesc(Xi) | Pa(Xi)) A

B C

E

G

D FE ⊥ {A,C,D,F} | B
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Independency mappings (I-maps)
Let P be a distribution over X
Let I(P) be the independencies (X ⊥ Y | Z) in P
A Bayesian network structure is an I-map 
(independency mapping) of P if I(G)⊆I(P)

I

S

I S P(I,S)

i0 s0 0.25

i0 s1 0.25

i1 s0 0.25

i1 s1 0.25

I

S

I S P(I,S)

i0 s0 0.4

i0 s1 0.3

i1 s0 0.2

i1 s1 0.1

I(P)={I⊥S} I(G)={I⊥S} I(G)=∅I(P)=∅
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Factorization Theorem
If G is an I-Map of P, then P factorizes over G.

Proof:
wlog. (without loss of generality)

X1,…,Xn is an ordering consistent with G
By chain rule: 

From assumption: 

Since G is an I-Map (Xi; NonDesc(Xi)| Pa(Xi))∈I(P)

∏
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Factorization implies I-Map
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G is an I-Map of P

Proof:
Need to show (Xi; NonDesc(Xi)| Pa(Xi))∈I(P) or that 

P(Xi | NonDesc(Xi)) = P(Xi | Pa(Xi))
wlog. X1,…,Xn is an ordering consistent with G
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Bayesian network definition
A Bayesian network is a pair (G,P)

P factorizes over G
P is specified as set of CPDs associated with G’s nodes 
(and its parents)

Parameters
Joint distribution: 2n

Bayesian network (bounded in-degree k): n2k
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Today and next class

Next class
Details on semantics of BNs, relate them to 
independence assumptions encoded by the graph.

Today’s To-Do List
Visit the course website.
Reading K&F 2.1-3, 3.1.
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