Readings: K&F 2.1, 2.2, 2.3, 3.1

 Introduction to

 Probabilistic Graphical Models

 Lecture 1 - Mar 28, 2011

 CSE 515, Statistical Methods, Spring 2011

 Instructor: Su-In Lee

 University of Washington, Seattle

2

Week	Торіс	Reading
1	Introduction, Bayesian network representation	2.1-3, 3.1
	Bayesian network representation cont.	3.1-3
2	Local probability models	5
	Undirected graphical models	4
3	Exact inference	9.1-4
	Exact inference cont.	10.1-2
4	Approximate inference	12.1-3
	Approximate inference cont.	12.1-3
5	Parameter estimation	17
	Parameter estimation cont.	17
6	Partially observed data (EM algorithm)	19.1-3
	Structure learning BNs	18
7	Structure learning BNs cont.	18
	Partially observed data	19.4-5
8	Learning undirected graphical models	20.1-3
	Learning undirected graphical models cont.	20.1-3
9	Hidden Markov Models	TBD
	HMMs cont. and Kalman filter	TBD
10	Markov decision processes	TBD

Application: recommendation systems

- Given user preferences, suggest recommendations
- Example: Amazon.com
- Input: movie preferences of many users
- Solution: model correlations between movie features
 - Users that like comedy, often like drama
 - Users that like action, often do not like cartoons
 - Users that like Robert Deniro films often like Al Pacino films
 - Given user preferences, can predict probability that new movies match preferences

CSE 515 – Statistical Methods – Spring 2011

14

Factorization implies I-Map • $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | Pa(X_i)) \Rightarrow G \text{ is an I-Map of P}$ Proof: • Need to show $(X_i; \text{ NonDesc}(X_i) | Pa(X_i)) \in I(P) \text{ or that}$ $P(X_i | \text{ NonDesc}(X_i)) = P(X_i | Pa(X_i))$ • wlog. $X_1,...,X_n$ is an ordering consistent with G • $P(X_i | NonDesc(X_i)) = \frac{P(X_i, NonDesc(X_i))}{P(NonDesc(X_i))}$ $= \prod_{k=1}^i P(X_k | Pa(X_k))$ $= P(X_i | Pa(X_k))$ $= P(X_i | Pa(X_i))$ $= P(X_i | Pa(X_k))$ $= P(X_i | Pa(X_i))$ $= P(X_i | Pa(X_i))$

 These lecture notes were generated based on the slides from Profs Eran Segal and Carlos Guestrin.

CSE 515 – Statistical Methods – Spring 2011

43