Introduction to

Probabilistic Graphical Models

Lecture 1 - Mar 28, 2011
CSE 515, Statistical Methods, Spring 2011

Instructor: Su-In Lee
University of Washington, Seattle

Logistics

- Teaching Staff
- Instructor: Su-In Lee (suinlee@uw.edu, PAC 536)
- Office hours: Fri 9-10am or by appointment (PAC 536)
- TA: Andrew Guillory (guillory@cs.washington.edu)
- Office hours: Wed 1:30-2:20 pm or by appointment (PAC 216)
- Course website
- cs.washington.edu/515
- Discussion group: course website
- Textbook
- (required) Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press
- Various research papers (copies available in class)

Course requirement

- 4 homework assignments (60% of final grade)
- Theory / implementation exercises
- First one goes out next Monday!
- 2 weeks to complete each
- HW problems are long and hard
- Please, please, please start early!
- Late/collaboration policies are described on the website
- Final exam (35\%)
- Date will be announced later.
- Participation (5\%)

Probabilistic graphical models (PGMs)

- One of the most exciting developments in machine learning (knowledge representation, AI, EE, Stats, ...) in the last two decades...
- Tool for representing complex systems and performing sophisticated reasoning tasks
- Why have a model?
- Compact and modular representation of complex systems
- Ability to efficiently execute complex reasoning tasks
- Make predictions
- Generalize from particular problem

Probabilistic graphical models (PGMs)

- Many classical probabilistic problems in statistics, information theory, pattern recognition, and statistical mechanics are special cases of the formalism
- Graphical models provides a common framework
- Advantage: specialized techniques developed in one field can be transferred between research communities
- PGMs are a marriage between graph theory and probability theory
- Representation: graph
- Reasoning: probability theory
- Any simple example?

A simple example

- We want to know/model whether our neighbor will inform us of the alarm being set off
- The alarm can set off (A) if
- There is a burglary (B)
- There is an earthquake (E)
- Whether our neighbor calls (N) depends on whether the alarm is set off (A)
- "Variables" in this system
- Whether alarm being set off (A); burglary (B); earthquake (E); our neighbor calls (N)

A sil probabilistic inference
$\frac{\text { Probabilistic I nference }}{\text { Task I Say that the alarm is set off }(A=\text { True }) \text {, then how likely is it to get }}$ a call from our neighbor ($\mathrm{N}=$ True)?

- Var Task II Given that my neighbor calls ($\mathrm{N}=$ True), how likely it is that a burglary occurred ($B=$ True)?
- Earthquake (E), Burglary (B), Alarm (A), NeighborCalls (N)

\mathbf{E}	\mathbf{B}	\mathbf{A}	\mathbf{N}	Prob.
F	F	F	F	0.01
F	F	F	T	0.04
F	F	T	F	0.05
F	F	T	T	0.01
F	T	F	F	0.02
F	T	F	T	0.07
F	T	T	F	0.2
F	T	T	T	0.1
T	F	F	F	0.01
T	F	F	T	0.07
T	F	T	F	0.13
T	F	T	T	0.04
T	T	F	F	0.06
T	T	F	T	0.05
T	T	T	F	0.1
T	T	T	T	0.05

A simple example

- Representation: graph
- Intuitive data structure
- Reasoning
- Probability theory

NeighborCalls	
\boldsymbol{N} \boldsymbol{A} F T F 0.9 0.1 T 0.2 0.8	

8 independent parameters

Example Bayesian network

- The "Alarm" network for monitoring intensive care patients
- 37 variables
- 509 parameters (full joint 2^{37})

Representation: graphs

- Intuitive data structure for modeling highly-interacting sets of variables
- Compact representation
- Explicit model of modularity
- Data structure that allows for design of efficient generalpurpose algorithms

Reasoning: probability theories

- Well understood framework for modeling uncertainty
- Partial knowledge of the state of the world
- Noisy observations
- Phenomenon not covered by our model
- Inherent stochasticity
- Clear semantics
- Can be learned from data

Probabilistic reasoning

- This course covers:
- Probabilistic graphical model (PGM) representation
- Bayesian networks (directed graph)
- Markov networks (undirected graph)
- Answering queries in PGMs ("inference")
- What is the probability of X given some observations?
- What is the most likely explanation for what is happening?
- Learning PGMs from data ("learning")
- What are the right/good parameters/structure of the model?
- Application \& special topics
- Modeling temporal processes with PGMs
- Hidden Markov Models (HMMs) as a special case
- Modeling decision-making processes
- Markov Decision Processes (MDPs) as a special case

Course outline

Week	Topic	Reading
1	Introduction, Bayesian network representation	$2.1-3,3.1$
	Bayesian network representation cont.	$3.1-3$
2	Local probability models	5
	Undirected graphical models	4
3	Exact inference	$9.1-4$
	Exact inference cont.	$10.1-2$
4	Approximate inference	$12.1-3$
	Approximate inference cont.	$12.1-3$
5	Parameter estimation	17
	Parameter estimation cont.	17
6	Partially observed data (EM algorithm)	$19.1-3$
	Structure learning BNs	18
7	Structure learning BNs cont.	18
	Partially observed data	$19.4-5$
8	Learning undirected graphical models	$20.1-3$
	Learning undirected graphical models cont.	$20.1-3$
9	Hidden Markov Models	TBD
	HMMs cont. and Kalman filter	TBD
10	Markov decision processes	TBD

Application:

recommendation systems

- Given user preferences, suggest recommendations
- Example: Amazon.com
- Input: movie preferences of many users
- Solution: model correlations between movie features
- Users that like comedy, often like drama
- Users that like action, often do not like cartoons
- Users that like Robert Deniro films often like Al Pacino films
- Given user preferences, can predict probability that new movies match preferences

Diagnostic systems

- Diagnostic indexing for home health site at microsoft
- Enter symptoms \rightarrow recommend multimedia content

Many research areas in CS

- Full of tasks that require reasoning under uncertainty

Enjoy!

- Probabilistic graphical models are having significant impact in science, engineering and beyond
- This class should give you the basic foundation for applying PGMs and developing new methods
- The fun begins ...

Today

- Basics of probability
- Conditional probabilities
- Statistical independence
- Random variable
- Simple Bayesian networks
- Two nodes make a BN
- Naïve Bayes
- Should be a review for everyone - Setting up notation for the class

Sample spaces, events and probabilities

- Probability
- A degree of confidence that an "event" of an uncertain nature will occur.
- Begin with a set Ω-- the sample space
- Space of possible outcomes
- e.g. if we consider dice, we might have a set $\Omega=\{1,2,3,4,5,6\}$
- $\alpha \in \Omega$ is a sample point / atomic event.
- A probability space is a sample space with an assignment $P(\alpha)$ for every $\alpha \in \Omega$ s.t.
- $0 \leq P(\alpha) \leq 1$
- $\sum_{\alpha} P(\alpha)=1$
- e.g. $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$
- An event A is any subset of Ω
- $\mathrm{P}(\mathrm{A})=\sum_{\left\{\alpha \in \mathrm{A}_{\}}\right.} \mathrm{P}(\alpha)$
- E.g., $P($ die roll $<4)=P(1)+P(2)+P(3)=0.5$

Conditional probabilities

- Consider two events α and β,
- e.g. $\alpha=$ getting admitted to the UW CSE,
$\beta=$ getting a job offer from Microsoft.
- After learning that α is true, how do we feel about β ?
- $P(\beta \mid \alpha)$

Two of the most important rules of the quarter: 1 . The chain rule

- From the definition of the conditional distribution, we immediately see that
- $P(\alpha \cap \beta)=P(\alpha) P(\beta \mid \alpha)$
- More generally:
- $\mathrm{P}\left(\alpha_{1} \cap \ldots \cap \alpha_{k}\right)=\mathrm{P}\left(\alpha_{1}\right) \mathrm{P}\left(\alpha_{2} \mid \alpha_{1}\right) \cdots \mathrm{P}\left(\alpha_{k} \mid \alpha_{1} \cap \ldots \cap \alpha_{k-1}\right)$

Two of the most important rules of the quarter: 2 . Bayes rule

- Another immediate consequence of the definition of conditional probability is:

$$
P(\alpha \mid \beta)=\frac{P(\beta \mid \alpha) P(\alpha)}{P(\beta)}
$$

- A more general version of Bayes' rule, where all the probabilities are conditioned on some "background" event γ :

$$
P(\alpha \mid \beta \cap \gamma)=\frac{P(\beta \mid \alpha \cap \gamma) P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}
$$

Most important concept of the quarter: a) Independence
 - α and β are independent, if $P(\beta \mid \alpha)=P(\beta)$
 - Denoted $P \rightarrow(\alpha \perp \beta)$

- Proposition: α and β are independent if and only if $P(\alpha \cap \beta)=P(\alpha) P(\beta)$

Most important concept of the quarter: b) Conditional independence

- Independence is rarely true, but conditionally...
- α and β conditionally independent given γ if $P(\beta \mid \alpha \cap \gamma)=P(\beta \mid \gamma)$
- $P \rightarrow(\alpha \perp \beta \mid \gamma)$

Proposition: $P \rightarrow(\alpha \perp \beta \mid \gamma)$ if and only if $\mathrm{P}(\alpha \cap \beta \mid \gamma)=\mathrm{P}(\alpha \mid \gamma) \mathrm{P}(\beta \mid \gamma)$

Random variables

- Probability distributions are defined for events
- Events are complicated - so, let's think about attributes - Age, Grade, HairColor
- A random variable (such as Grade), is defined by a function that associates each outcome in Ω (each person) with a value.
- Grade = A - shorthand for event $\left\{w \in \Omega: f_{\text {Grade }}(w)=A\right\}$
- Grade $=\mathrm{B}$ - shorthand for event $\left\{w \in \Omega: \mathrm{f}_{\text {Grade }}(\mathrm{w})=\mathrm{B}\right\}$
- Properties of a random variable X:
- $\operatorname{Val}(X)=$ a set of possible values of random variable X
- For discrete (categorical): $\sum_{i=1, \ldots,|\mathrm{Val}(\mathrm{X})|} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=1$
- $P(x) \geq 0$

Basic concepts for random variables

- Atomic event: assignment $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ to $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Conditional probability: $P(Y \mid X)=P(X, Y) / P(X)$
- For all values $x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y)$
- Bayes rule: $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=$
- Chain rule:
- $P\left(X_{1}, \ldots, X_{n}\right)=$

Joint distribution, marginalization

- Two random variables - Grade \& Intelligence
- Marginalization - Compute marginal over single variable

Marginalization - the general case

- Compute marginal distribution $P\left(X_{i}\right)$ from joint distribution $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$:

$$
P\left(X_{1}, X_{2}, \ldots, X_{i}\right)=\sum_{x_{i+1}, \ldots, x_{n}} P\left(X_{1}, X_{2}, \ldots, X_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

$$
P\left(X_{i}\right)=\sum_{x_{1}, \ldots, x_{i-1}} P\left(x_{1}, \ldots, x_{i-1}, X_{i}\right)
$$

Today

- Basics of probability
- Conditional probabilities
- Statistical independence
- Random variable
- Two nodes make a BN
- Naïve Bayes
- Should be a review for everyone - Setting up notation for the class

Representing joint distributions

- Random variables: X_{1}, \ldots, X_{n}
- P is a joint distribution over $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$

If X_{1}, \ldots, X_{n} binary, need 2^{n} parameters to describe P

Can we represent P more compactly?

- Key: Exploit independence properties

Independent random variables

- If X_{1}, \ldots, X_{n} are independent then:
- $P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \ldots P\left(X_{n}\right)$
- $O(n)$ parameters
- All 2^{n} probabilities are implicitly defined
- Cannot represent many types of distributions
- X and Y are conditionally independent given Z if
- $P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)$ for all values x, y, z
- Equivalently, if we know Z, then knowing Y does not change predictions of X
- Notation: (X \perp Y \| Z

Conditional parameterization

- $S=$ SAT score, $\operatorname{Val}(S)=\left\{s^{0}, S^{1}\right\}$
- $\mathrm{I}=$ Intelligence, $\operatorname{Val}(\mathrm{I})=\left\{\mathrm{i}^{0}, \mathrm{i}^{1}\right\}$

$P(I, S)$
\boldsymbol{I} \boldsymbol{S} $\boldsymbol{P}(\boldsymbol{I}, \boldsymbol{S})$ i^{0} $\mathrm{~s}^{0}$ 0.665 i^{0} $\mathrm{~s}^{1}$ 0.035 i^{1} $\mathrm{~s}^{0}$ 0.06 i^{1} $\mathrm{~s}^{1}$ 0.24

Joint parameterization

3 parameters

Conditional parameterization

3 parameters

Alternative parameterization: $\mathrm{P}(\mathrm{S})$ and $\mathrm{P}(\mathrm{I} \mid \mathrm{S})$

Conditional parameterization

- $\mathrm{S}=\mathrm{SAT}$ score, $\operatorname{Val}(\mathrm{S})=\left\{\mathrm{s}^{0}, \mathrm{~s}^{1}\right\}$
- $\mathrm{I}=$ Intelligence, $\operatorname{Val}(\mathrm{I})=\left\{\mathrm{i}^{0}, \mathrm{i}^{1}\right\}$
- $\mathrm{G}=$ Grade, $\operatorname{Val}(\mathrm{G})=\left\{\mathrm{g}^{0}, \mathrm{~g}^{1}, \mathrm{~g}^{2}\right\}$
- Assume that G and S are independent given I
- Joint parameterization
- 2•2•3=12-1=11 independent parameters
- Conditional parameterization has
- $\mathrm{P}(\mathrm{I}, \mathrm{S}, \mathrm{G})=\mathrm{P}(\mathrm{I}) \mathrm{P}(\mathrm{S} \mid \mathrm{I}) \mathrm{P}(\mathrm{G} \mid \mathrm{I}, \mathrm{S})=\mathrm{P}(\mathrm{I}) \mathrm{P}(\mathrm{S} \mid \mathrm{I}) \mathrm{P}(\mathrm{G} \mid \mathrm{I})$
- $P(I)-1$ independent parameter
- $P(\mathrm{~S} \mid \mathrm{I})-2 \cdot 1$ independent parameters
- $P(G \mid I)$ - 2.2 independent parameters
- 7 independent parameters

Naïve Bayes model

- Class variable $\mathrm{C}, \operatorname{Val}(\mathrm{C})=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}$
- Evidence variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Naïve Bayes assumption: evidence variables
are conditionally independent given C
$P\left(C, X_{1}, \ldots, X_{n}\right)=P(C) \prod_{i=1}^{n} P\left(X_{i} \mid C\right)$
- Applications in medical diagnosis, text classification
- Used as a classifier:

$$
\frac{P\left(C=c_{1} \mid x_{1}, \ldots, x_{n}\right)}{P\left(C=c_{2} \mid x_{1}, \ldots, x_{n}\right)}=\frac{P\left(C=c_{1}\right)}{P\left(C=c_{2}\right)} \prod_{i=1}^{n} \frac{P\left(x_{i} \mid C=c_{1}\right)}{P\left(x_{i} \mid C=c_{2}\right)}
$$

- Problem: Double counting correlated evidence

Bayesian network (informal)

- Directed acyclic graph G
- Nodes represent random variables
- Edges represent direct influences between random variables
- Local probability models
(I)
(S)

Example 1

Example 2

Naïve Bayes

Bayesian network (informal)

- Represent a joint distribution
- Specifies the probability for $P(\mathbf{X}=\mathbf{x})$
- Specifies the probability for $\mathrm{P}(\mathbf{X}=\mathbf{x} \mid \mathbf{E}=\mathbf{e})$
- Allows for reasoning patterns
- Prediction (e.g., intelligent \rightarrow high scores)
- Explanation (e.g., low score \rightarrow not intelligent)
- Explaining away (different causes for same effect interact)

Bayesian network structure

- Directed acyclic graph G
- Nodes X_{1}, \ldots, X_{n} represent random variables
- G encodes local Markov assumptions
- X_{i} is independent of its non-descendants given its parents
- Formally: $\left(X_{i} \perp \operatorname{NonDesc}\left(X_{i}\right) \mid \operatorname{Pa}\left(X_{i}\right)\right)$
$E \perp\{A, C, D, F\} \mid B$
(D)

B

G

Independency mappings (I-maps)

- Let P be a distribution over \mathbf{X}
- Let $\mathrm{I}(\mathrm{P})$ be the independencies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ in P
- A Bayesian network structure is an I-map (independency mapping) of P if $\mathrm{I}(\mathrm{G}) \subseteq \mathrm{I}(\mathrm{P})$
(I)
(S)

$\mathrm{I}(\mathrm{G})=\{\mathrm{I} \perp \mathrm{S}\} \quad \mathrm{I}(\mathrm{P})=\{\mathrm{I} \perp \mathrm{S}\}$

Factorization Theorem

- If G is an I-Map of P, then P factorizes over G.

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Proof:

- wlog. (without loss of generality)
X_{1}, \ldots, X_{n} is an ordering consistent with G
- By chain rule: $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
- From assumption: $\operatorname{Pa}\left(X_{i}\right) \subseteq\left\{X_{1,}, \ldots, X_{i-1}\right\}$

$$
\left\{X_{1,}, \ldots, X_{i-1}\right\}-P a\left(X_{i}\right) \subseteq \operatorname{NonDesc}\left(X_{i}\right)
$$

- Since G is an I-Map $\rightarrow\left(\mathrm{X}_{\mathrm{i}} ; \operatorname{NonDesc}\left(\mathrm{X}_{\mathrm{i}}\right) \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)\right) \in \mathrm{I}(\mathrm{P})$

$$
P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Factorization implies I-Map

- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid P a\left(X_{i}\right)\right) \rightarrow \mathrm{G}$ is an I-Map of P

Proof:

- Need to show $\left(X_{i} ; \operatorname{NonDesc}\left(X_{i}\right) \mid \operatorname{Pa}\left(X_{i}\right)\right) \in I(P)$ or that $P\left(X_{i} \mid \operatorname{NonDesc}\left(X_{i}\right)\right)=P\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)$
- wlog. X_{1}, \ldots, X_{n} is an ordering consistent with G

■

$$
\begin{aligned}
P\left(X_{i} \mid \operatorname{NonDesc}\left(X_{i}\right)\right) & =\frac{P\left(X_{i}, \operatorname{NonDesc}\left(X_{i}\right)\right)}{P\left(\operatorname{NonDesc}\left(X_{i}\right)\right)} \\
& =\frac{\prod_{k=1}^{i} P\left(X_{k} \mid \operatorname{Pa}\left(X_{k}\right)\right)}{\prod_{k=1}^{i-1} P\left(X_{k} \mid \operatorname{Pa}\left(X_{k}\right)\right)} \\
& =P\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)
\end{aligned}
$$

Bayesian network definition

- A Bayesian network is a pair (G,P)
- P factorizes over G
- P is specified as set of CPDs associated with G's nodes (and its parents)
- Parameters
- Joint distribution: 2^{n}
- Bayesian network (bounded in-degree k): n2 ${ }^{\text {k }}$

Today and next class

- Next class
- Details on semantics of BNs, relate them to independence assumptions encoded by the graph.
- Today's To-Do List
- Visit the course website.
- Reading K\&F 2.1-3, 3.1.

Acknowledgement

- These lecture notes were generated based on the slides from Profs Eran Segal and Carlos Guestrin.

