Require Import List.
Require Import String.
Require Import ZArith.
Open Scope list_scope.
Open Scope string_scope.
Open Scope Z_scope.
Require Import StructTactics.
Require Import ImpSyntax.
Require Import ImpCommon.
Require Import ImpEval.
Require ImpInterp.
Require Import ImpInterpProof.
Require ImpInterpNock.
Module I := ImpInterp.
Module F := ImpInterpNock.
Lemma nock_op1_ok :
forall op v v',
I.interp_op1 op v = Some v' ->
F.interp_op1 op v = v'.
Proof.
unfold I.interp_op1; intros.
repeat break_match;
solve_by_inversion.
Qed.
Lemma nock_op2_ok :
forall op v1 v2 v',
I.interp_op2 op v1 v2 = Some v' ->
F.interp_op2 op v1 v2 = v'.
Proof.
unfold I.interp_op2; intros.
repeat break_match;
solve_by_inversion.
Qed.
Lemma nock_e_ok :
forall s h e v,
I.interp_e s h e = Some v ->
F.interp_e s h e = v.
Proof.
induction e; simpl; intros.
- invc H; auto.
- unfold F.lkup'. find_rewrite; auto.
- break_match; try discriminate.
erewrite IHe; eauto.
apply nock_op1_ok; auto.
- repeat break_match; try discriminate.
erewrite IHe1; eauto.
erewrite IHe2; eauto.
apply nock_op2_ok; auto.
- break_match_hyp; try discriminate.
erewrite IHe; eauto.
break_match_hyp; try discriminate.
+ find_inversion. auto.
+ break_match_hyp; try discriminate.
break_match_hyp; try discriminate.
find_inversion. auto.
- break_match_hyp; try discriminate.
erewrite IHe1; eauto.
break_match_hyp; try discriminate.
+ break_match_hyp; try discriminate.
erewrite IHe2; eauto.
break_match_hyp; try discriminate.
break_match_hyp; try discriminate.
unfold F.strget'.
break_match_hyp; try discriminate.
find_inversion; auto.
+ unfold F.read'.
repeat break_match_hyp; try discriminate.
erewrite IHe2; eauto.
simpl. find_rewrite; auto.
Qed.
Lemma nock_e_ok' :
forall s h e v,
F.interp_e s h e = v ->
I.interp_e s h e = Some v \/
(forall v', ~ eval_e s h e v').
Proof.
intros; subst.
destruct (I.interp_e s h e) eqn:?.
+ find_apply_lem_hyp nock_e_ok.
subst; auto.
+ right; unfold not; intros.
find_apply_lem_hyp eval_e_interp_e.
congruence.
Qed.
Lemma nocks_e_ok :
forall s h es vs,
I.interps_e s h es = Some vs ->
F.interps_e s h es = vs.
Proof.
induction es; simpl; intros.
- congruence.
- repeat break_match; subst; try discriminate.
find_inversion. f_equal; auto.
apply nock_e_ok; auto.
Qed.
Lemma nock_updates_ok :
forall s xs vs s',
updates s xs vs = Some s' ->
F.updates' s xs vs = s'.
Proof.
intros s xs; revert s.
induction xs; simpl; intros.
- break_match; try discriminate.
find_inversion; auto.
- break_match; try discriminate.
auto.
Qed.
Lemma nock_s_ok :
forall s h p s' h' p',
I.interp_s s h p = Some (s', h', p') ->
F.interp_s s h p = (s', h', p').
Proof.
induction p; simpl; intros.
- discriminate.
- break_match; try discriminate.
erewrite nock_e_ok; eauto.
inv H; auto.
- repeat break_match; try discriminate.
repeat (erewrite nock_e_ok; eauto).
invc H; auto.
- repeat break_match_hyp; try discriminate.
unfold F.write', F.lkup'. repeat find_rewrite.
repeat (erewrite nock_e_ok; eauto).
invc H. repeat find_rewrite; auto.
- break_match_hyp; try discriminate.
find_apply_lem_hyp nock_e_ok.
find_rewrite.
break_match; try discriminate.
break_match; find_inversion; auto.
- break_match_hyp; try discriminate.
find_apply_lem_hyp nock_e_ok.
find_rewrite.
break_match; try discriminate.
break_match; find_inversion; auto.
- repeat break_match; subst; try discriminate.
+ find_inversion; auto.
+ find_inversion; auto.
specialize (IHp1 s' h' s2).
forward IHp1; auto.
find_apply_hyp_hyp. find_inversion; auto.
Qed.
Lemma nocks_s_done_ok :
forall n s h p ret h' v,
I.interps_p n s h p ret = Done h' v ->
F.interps_p n s h p ret = Done h' v.
Proof.
induction n; simpl; intros.
- discriminate.
- repeat break_match_hyp; try discriminate.
+ find_inversion.
erewrite nock_e_ok; eauto.
+ erewrite nock_s_ok; eauto.
Qed.
Lemma nocks_s_timeout_ok :
forall n s h p ret s' h' p',
I.interps_p n s h p ret = Timeout s' h' p' ret ->
F.interps_p n s h p ret = Timeout s' h' p' ret.
Proof.
induction n; simpl; intros.
- find_inversion; auto.
- repeat break_match_hyp; try discriminate.
erewrite nock_s_ok; eauto.
Qed.
Require Import String.
Require Import ZArith.
Open Scope list_scope.
Open Scope string_scope.
Open Scope Z_scope.
Require Import StructTactics.
Require Import ImpSyntax.
Require Import ImpCommon.
Require Import ImpEval.
Require ImpInterp.
Require Import ImpInterpProof.
Require ImpInterpNock.
Module I := ImpInterp.
Module F := ImpInterpNock.
Lemma nock_op1_ok :
forall op v v',
I.interp_op1 op v = Some v' ->
F.interp_op1 op v = v'.
Proof.
unfold I.interp_op1; intros.
repeat break_match;
solve_by_inversion.
Qed.
Lemma nock_op2_ok :
forall op v1 v2 v',
I.interp_op2 op v1 v2 = Some v' ->
F.interp_op2 op v1 v2 = v'.
Proof.
unfold I.interp_op2; intros.
repeat break_match;
solve_by_inversion.
Qed.
Lemma nock_e_ok :
forall s h e v,
I.interp_e s h e = Some v ->
F.interp_e s h e = v.
Proof.
induction e; simpl; intros.
- invc H; auto.
- unfold F.lkup'. find_rewrite; auto.
- break_match; try discriminate.
erewrite IHe; eauto.
apply nock_op1_ok; auto.
- repeat break_match; try discriminate.
erewrite IHe1; eauto.
erewrite IHe2; eauto.
apply nock_op2_ok; auto.
- break_match_hyp; try discriminate.
erewrite IHe; eauto.
break_match_hyp; try discriminate.
+ find_inversion. auto.
+ break_match_hyp; try discriminate.
break_match_hyp; try discriminate.
find_inversion. auto.
- break_match_hyp; try discriminate.
erewrite IHe1; eauto.
break_match_hyp; try discriminate.
+ break_match_hyp; try discriminate.
erewrite IHe2; eauto.
break_match_hyp; try discriminate.
break_match_hyp; try discriminate.
unfold F.strget'.
break_match_hyp; try discriminate.
find_inversion; auto.
+ unfold F.read'.
repeat break_match_hyp; try discriminate.
erewrite IHe2; eauto.
simpl. find_rewrite; auto.
Qed.
Lemma nock_e_ok' :
forall s h e v,
F.interp_e s h e = v ->
I.interp_e s h e = Some v \/
(forall v', ~ eval_e s h e v').
Proof.
intros; subst.
destruct (I.interp_e s h e) eqn:?.
+ find_apply_lem_hyp nock_e_ok.
subst; auto.
+ right; unfold not; intros.
find_apply_lem_hyp eval_e_interp_e.
congruence.
Qed.
Lemma nocks_e_ok :
forall s h es vs,
I.interps_e s h es = Some vs ->
F.interps_e s h es = vs.
Proof.
induction es; simpl; intros.
- congruence.
- repeat break_match; subst; try discriminate.
find_inversion. f_equal; auto.
apply nock_e_ok; auto.
Qed.
Lemma nock_updates_ok :
forall s xs vs s',
updates s xs vs = Some s' ->
F.updates' s xs vs = s'.
Proof.
intros s xs; revert s.
induction xs; simpl; intros.
- break_match; try discriminate.
find_inversion; auto.
- break_match; try discriminate.
auto.
Qed.
Lemma nock_s_ok :
forall s h p s' h' p',
I.interp_s s h p = Some (s', h', p') ->
F.interp_s s h p = (s', h', p').
Proof.
induction p; simpl; intros.
- discriminate.
- break_match; try discriminate.
erewrite nock_e_ok; eauto.
inv H; auto.
- repeat break_match; try discriminate.
repeat (erewrite nock_e_ok; eauto).
invc H; auto.
- repeat break_match_hyp; try discriminate.
unfold F.write', F.lkup'. repeat find_rewrite.
repeat (erewrite nock_e_ok; eauto).
invc H. repeat find_rewrite; auto.
- break_match_hyp; try discriminate.
find_apply_lem_hyp nock_e_ok.
find_rewrite.
break_match; try discriminate.
break_match; find_inversion; auto.
- break_match_hyp; try discriminate.
find_apply_lem_hyp nock_e_ok.
find_rewrite.
break_match; try discriminate.
break_match; find_inversion; auto.
- repeat break_match; subst; try discriminate.
+ find_inversion; auto.
+ find_inversion; auto.
specialize (IHp1 s' h' s2).
forward IHp1; auto.
find_apply_hyp_hyp. find_inversion; auto.
Qed.
Lemma nocks_s_done_ok :
forall n s h p ret h' v,
I.interps_p n s h p ret = Done h' v ->
F.interps_p n s h p ret = Done h' v.
Proof.
induction n; simpl; intros.
- discriminate.
- repeat break_match_hyp; try discriminate.
+ find_inversion.
erewrite nock_e_ok; eauto.
+ erewrite nock_s_ok; eauto.
Qed.
Lemma nocks_s_timeout_ok :
forall n s h p ret s' h' p',
I.interps_p n s h p ret = Timeout s' h' p' ret ->
F.interps_p n s h p ret = Timeout s' h' p' ret.
Proof.
induction n; simpl; intros.
- find_inversion; auto.
- repeat break_match_hyp; try discriminate.
erewrite nock_s_ok; eauto.
Qed.
This page has been generated by coqdoc