Require Import Bool.
Require Import List.
Require Import String.
Require Import ZArith.
Require Import Omega.
Require Import List.
Require Import String.
Require Import ZArith.
Require Import Omega.
List provides the cons notation "::" and the append notation "++".
Prop is the type we give to propositions.
constructor.
exact I.
Qed.
Print True.
Inductive myFalse : Prop :=
.
Print False.
Lemma bogus:
False -> 1 = 2.
Proof.
intros.
inversion H.
Qed.
Lemma foo' :
Type.
Proof.
exact bool.
Qed.
Print True.
Inductive myFalse : Prop :=
.
Print False.
Lemma bogus:
False -> 1 = 2.
Proof.
intros.
inversion H.
Qed.
Lemma foo' :
Type.
Proof.
exact bool.
apply list.
apply nat.
exact list.
exact (list bool).
exact bool.
Note that even equality is defined, not builtin.
Here's yo, another definition of an empty type.
We will have to do a little more work to
show that yo is empty though.
well, that didn't work
induction H.
assumption.
assumption.
but that did!
Qed.
Negation in Coq is encoded in the not type.
It sort of works like our yoyo proof above.
Open Scope string_scope.
Check (1 + 2).
Open Scope Z_scope.
Check (1 + 2).
Inductive expr : Type :=
| Eint : Z -> expr
| Evar : string -> expr
| Eadd : expr -> expr -> expr
| Emul : expr -> expr -> expr
| Elte : expr -> expr -> expr.
Check (1 + 2).
Open Scope Z_scope.
Check (1 + 2).
Inductive expr : Type :=
| Eint : Z -> expr
| Evar : string -> expr
| Eadd : expr -> expr -> expr
| Emul : expr -> expr -> expr
| Elte : expr -> expr -> expr.
On paper, we would typically write this
type down using a "BNF grammar" as:
expr ::= Z | Var | expr + expr | expr * expr | expr <= expr
Coercion Eint : Z >-> expr.
Coercion Evar : string >-> expr.
Notation "X [+] Y" := (Eadd X Y)
(at level 83, left associativity).
Notation "X [*] Y" := (Emul X Y)
(at level 82, left associativity).
Notation "X [<=] Y" := (Elte X Y)
(at level 84, no associativity).
Check (1 [+] 2).
Check ("x" [+] 2).
Check ("x" [+] 2 [<=] "y").
Check (Elte (Eadd (Evar "x") (Eint 2)) (Evar "y")).
weird
Lemma add_comm_bogus :
(forall e1 e2, Eadd e1 e2 = Eadd e2 e1) ->
False.
Proof.
intros.
specialize (H 0 1).
discriminate.
Qed.
Fixpoint nconsts (e: expr) : nat :=
match e with
| Eint _ =>
1
| Evar _ =>
0
| Eadd e1 e2 =>
nconsts e1 + nconsts e2
| Emul e1 e2 =>
nconsts e1 + nconsts e2
| Elte e1 e2 =>
nconsts e1 + nconsts e2
end.
Eval cbv in (nconsts (1 [*] 2 [+] "x" [<=] 5)).
Print exist.
Lemma expr_w_3_consts:
exists e,
nconsts e = 3%nat.
Proof.
exists (3 [+] 2 [+] 1).
simpl. reflexivity.
Qed.
(forall e1 e2, Eadd e1 e2 = Eadd e2 e1) ->
False.
Proof.
intros.
specialize (H 0 1).
discriminate.
Qed.
Fixpoint nconsts (e: expr) : nat :=
match e with
| Eint _ =>
1
| Evar _ =>
0
| Eadd e1 e2 =>
nconsts e1 + nconsts e2
| Emul e1 e2 =>
nconsts e1 + nconsts e2
| Elte e1 e2 =>
nconsts e1 + nconsts e2
end.
Eval cbv in (nconsts (1 [*] 2 [+] "x" [<=] 5)).
Print exist.
Lemma expr_w_3_consts:
exists e,
nconsts e = 3%nat.
Proof.
exists (3 [+] 2 [+] 1).
simpl. reflexivity.
Qed.
Compute the size of an expression.
Fixpoint esize (e: expr) : nat :=
match e with
| Eint _
| Evar _ =>
1
| Eadd e1 e2
| Emul e1 e2
| Elte e1 e2 =>
esize e1 + esize e2
end.
Print esize.
Lemma nconsts_le_size:
forall e,
(nconsts e <= esize e)%nat.
Proof.
intros.
induction e.
+ simpl. auto.
+ simpl. auto.
+ simpl. omega.
+ simpl. omega.
+ simpl. omega.
Qed.
match e with
| Eint _
| Evar _ =>
1
| Eadd e1 e2
| Emul e1 e2
| Elte e1 e2 =>
esize e1 + esize e2
end.
Print esize.
Lemma nconsts_le_size:
forall e,
(nconsts e <= esize e)%nat.
Proof.
intros.
induction e.
+ simpl. auto.
+ simpl. auto.
+ simpl. omega.
+ simpl. omega.
+ simpl. omega.
Qed.
that proof had a lot of copy-pasta :(
Lemma nconsts_le_size':
forall e,
(nconsts e <= esize e)%nat.
Proof.
intros.
induction e; simpl; auto; omega.
Qed.
Locate "<=".
Print le.
forall e,
(nconsts e <= esize e)%nat.
Proof.
intros.
induction e; simpl; auto; omega.
Qed.
Locate "<=".
Print le.
le is a relation defined as an "inductive predicate".
We give rules for when the relation holds:
(1) all nats are less than or equal to themselves and
(2) if n <= m, then also n <= S m.
All proofs of le are built up from just these
two constructors!
We can define our own relations
to encode properties of expressions.
In the has_const inductive predicate
below, each constructor corresponds to
one way you could prove that an expression
has a constant.
Inductive has_const : expr -> Prop :=
| hc_int :
forall c, has_const (Eint c)
| hc_add_l :
forall e1 e2,
has_const e1 ->
has_const (Eadd e1 e2)
| hc_add_r :
forall e1 e2,
has_const e2 ->
has_const (Eadd e1 e2)
| hc_mul_l :
forall e1 e2,
has_const e1 ->
has_const (Emul e1 e2)
| hc_mul_r :
forall e1 e2,
has_const e2 ->
has_const (Emul e1 e2)
| hc_cmp_l :
forall e1 e2,
has_const e1 ->
has_const (Elte e1 e2)
| hc_cmp_r :
forall e1 e2,
has_const e2 ->
has_const (Elte e1 e2).
Similarly, we can define a relation
that holds on expressions that contain
a variable.
Inductive has_var : expr -> Prop :=
| hv_var :
forall s, has_var (Evar s)
| hv_add_l :
forall e1 e2,
has_var e1 ->
has_var (Eadd e1 e2)
| hv_add_r :
forall e1 e2,
has_var e2 ->
has_var (Eadd e1 e2)
| hv_mul_l :
forall e1 e2,
has_var e1 ->
has_var (Emul e1 e2)
| hv_mul_r :
forall e1 e2,
has_var e2 ->
has_var (Emul e1 e2)
| hv_cmp_l :
forall e1 e2,
has_var e1 ->
has_var (Elte e1 e2)
| hv_cmp_r :
forall e1 e2,
has_var e2 ->
has_var (Elte e1 e2).
| hv_var :
forall s, has_var (Evar s)
| hv_add_l :
forall e1 e2,
has_var e1 ->
has_var (Eadd e1 e2)
| hv_add_r :
forall e1 e2,
has_var e2 ->
has_var (Eadd e1 e2)
| hv_mul_l :
forall e1 e2,
has_var e1 ->
has_var (Emul e1 e2)
| hv_mul_r :
forall e1 e2,
has_var e2 ->
has_var (Emul e1 e2)
| hv_cmp_l :
forall e1 e2,
has_var e1 ->
has_var (Elte e1 e2)
| hv_cmp_r :
forall e1 e2,
has_var e2 ->
has_var (Elte e1 e2).
We can also write boolean functions
that check the same properties.
Note that orb is disjuction over
booleans:
Print orb.
Fixpoint hasConst (e: expr) : bool :=
match e with
| Eint _ => true
| Evar _ => false
| Eadd e1 e2 => orb (hasConst e1) (hasConst e2)
| Emul e1 e2 => orb (hasConst e1) (hasConst e2)
| Elte e1 e2 => orb (hasConst e1) (hasConst e2)
end.
Fixpoint hasConst (e: expr) : bool :=
match e with
| Eint _ => true
| Evar _ => false
| Eadd e1 e2 => orb (hasConst e1) (hasConst e2)
| Emul e1 e2 => orb (hasConst e1) (hasConst e2)
| Elte e1 e2 => orb (hasConst e1) (hasConst e2)
end.
We can write that a little more compactly using
the "||" notation for orb provided by
the Bool library.
Fixpoint hasVar (e: expr) : bool :=
match e with
| Eint _ => false
| Evar _ => true
| Eadd e1 e2 => hasVar e1 || hasVar e2
| Emul e1 e2 => hasVar e1 || hasVar e2
| Elte e1 e2 => hasVar e1 || hasVar e2
end.
match e with
| Eint _ => false
| Evar _ => true
| Eadd e1 e2 => hasVar e1 || hasVar e2
| Emul e1 e2 => hasVar e1 || hasVar e2
| Elte e1 e2 => hasVar e1 || hasVar e2
end.
That looks way easier!
However, as the quarter progresses,
we'll see that sometime defining a
property as an inductive relation
is more convenient.
We can prove that our relational
and functional versions agree.
This shows that the hasConst function is COMPLETE
with respect to the relation has_const.
Thus, anything that satisfies the relation evaluates
to "true" under the function hasConst.
Lemma has_const_hasConst:
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction e.
+ simpl. reflexivity.
+ simpl.
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction e.
+ simpl. reflexivity.
+ simpl.
uh oh, trying to prove something false! it's OK though because we have a bogus hyp!
inversion H.
inversion lets us do case analysis on
how a hypothesis of an inductive type
may have been built. In this case, there
is no way to build a value of type
"has_const (Evar s)", so we complete
the proof of this subgoal for all
zero ways of building such a value
+
here we use inversion to consider
how a value of type "has_const (Eadd e1 e2)"
could have been built
inversion H.
-
-
built with hc_add_l
subst.
subst rewrites all equalities it can
apply IHe1 in H1.
simpl.
simpl.
remember notation "||" is same as orb
rewrite H1. simpl. reflexivity.
-
-
built with hc_add_r
subst. apply IHe2 in H1.
simpl. rewrite H1.
simpl. rewrite H1.
use fact that orb is commutative
you can find this by turning on
auto completion or using a search query
Mul case is similar
inversion H; simpl; subst.
- apply IHe1 in H1; rewrite H1; auto.
- apply IHe2 in H1; rewrite H1;
rewrite orb_comm; auto.
+
- apply IHe1 in H1; rewrite H1; auto.
- apply IHe2 in H1; rewrite H1;
rewrite orb_comm; auto.
+
Lte case is similar
inversion H; simpl; subst.
- apply IHe1 in H1; rewrite H1; auto.
- apply IHe2 in H1; rewrite H1;
rewrite orb_comm; auto.
Qed.
- apply IHe1 in H1; rewrite H1; auto.
- apply IHe2 in H1; rewrite H1;
rewrite orb_comm; auto.
Qed.
Now for the other direction.
Here we'll prove that the hasConst function
is SOUND with respect to the relation.
That is, if hasConst produces true,
then there is some proof of the inductive
relation has_const.
Lemma hasConst_has_const:
forall e,
hasConst e = true ->
has_const e.
Proof.
intros.
induction e.
+ simpl.
forall e,
hasConst e = true ->
has_const e.
Proof.
intros.
induction e.
+ simpl.
we can prove this case with a constructor
constructor.
this uses hc_const
+
Uh oh, no constructor for has_const
can possibly produce a value of our
goal type! It's OK though because
we have a bogus hypothesis.
simpl in H.
discriminate.
+
discriminate.
+
now do Add case
simpl in H.
either e1 or e2 had a Const
consider cases for H
destruct H.
-
-
e1 had a Const
e2 had a Const
Mul case is similar
constructor will just use hc_mul_l
constructor. apply IHe1. assumption.
-
-
constructor will screw up and try hc_mul_l again! constructor is rather dim
constructor.
OOPS!
Lte case is similar
we can stitch these two lemmas together
- >
<-
Notice all that work was only for the "true" cases!
We can prove analogous facts for the "false" cases too.
Here we will prove the "false" cases directly.
However, note that you could use has_const_iff_hasConst
to get a much simpler proof.
Lemma not_has_const_hasConst:
forall e,
~ has_const e ->
hasConst e = false.
Proof.
unfold not. intros.
induction e.
+ simpl.
uh oh, trying to prove something bogus better exploit a bogus hypothesis
exfalso.
proof by contradiction
prove conjunction by proving left and right
split.
- apply IHe1. intro.
apply H. apply hc_add_l. assumption.
- apply IHe2. intro.
apply H. apply hc_add_r. assumption.
+
- apply IHe1. intro.
apply H. apply hc_add_l. assumption.
- apply IHe2. intro.
apply H. apply hc_add_r. assumption.
+
Mul case is similar
simpl; apply orb_false_iff.
split.
- apply IHe1; intro.
apply H. apply hc_mul_l. assumption.
- apply IHe2; intro.
apply H. apply hc_mul_r. assumption.
+
split.
- apply IHe1; intro.
apply H. apply hc_mul_l. assumption.
- apply IHe2; intro.
apply H. apply hc_mul_r. assumption.
+
Lte case is similar
simpl; apply orb_false_iff.
split.
- apply IHe1; intro.
apply H. apply hc_cmp_l. assumption.
- apply IHe2; intro.
apply H. apply hc_cmp_r. assumption.
Qed.
split.
- apply IHe1; intro.
apply H. apply hc_cmp_l. assumption.
- apply IHe2; intro.
apply H. apply hc_cmp_r. assumption.
Qed.
Here is a more direct proof based on the
iff we proved for the true case.
do case analysis on hasConst e eqn:? remembers the result in a hypothesis
now we have hasConst e = true in our hypothesis
We have a contradiction in our hypotheses discriminate won't work this time though
For the other case, this is easy
Qed.
Now the other direction of the false case
Lemma false_hasConst_hasConst:
forall e,
hasConst e = false ->
~ has_const e.
Proof.
unfold not. intros.
induction e;
forall e,
hasConst e = false ->
~ has_const e.
Proof.
unfold not. intros.
induction e;
crunch down everything in subgoals
get both proofs out of a conjunction
by destructing it
destruct H.
case analysis on H0 DISCUSS: how do we know to do this?
inversion H0.
- subst. auto.
- subst. auto.
auto will chain things for us
- subst. auto.
+
+
Mul case similar
Lte case similar
Since we've proven the iff for the true case We can use it to prove the false case This is the same lemma as above, but using our previous results
~ X is just X -> False
We can also do all the same
sorts of proofs for has_var and hasVar
TODO: try this without copying from above
TODO: try this without copying from above
TODO: try this without copying from above
Admitted.
we can also prove things about expressions
prove left side of disjunction
left.
constructor.
+
constructor.
+
prove right side of disjunction
right.
constructor.
+
constructor.
+
case analysis on IHe1
destruct IHe1.
- left. constructor. assumption.
- right. constructor. assumption.
+
- left. constructor. assumption.
- right. constructor. assumption.
+
Mul case similar
destruct IHe1.
- left. constructor. assumption.
- right. constructor. assumption.
+
- left. constructor. assumption.
- right. constructor. assumption.
+
Cmp case similar
destruct IHe1.
- left. constructor. assumption.
- right. constructor. assumption.
Qed.
- left. constructor. assumption.
- right. constructor. assumption.
Qed.
we could have gotten some of the
has_const lemmas by being a little clever!
(but then we wouldn't have
learned as many tactics ;) )
Lemma has_const_hasConst':
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction H; simpl; auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
Qed.
or even better
Lemma has_const_hasConst'':
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction H; simpl; auto;
rewrite orb_true_iff; auto.
Qed.
Lemma not_has_const_hasConst'':
forall e,
~ has_const e ->
hasConst e = false.
Proof.
unfold not; intros.
destruct (hasConst e) eqn:?.
- exfalso. apply H.
apply hasConst_has_const; auto.
- reflexivity.
Qed.
Lemma false_hasConst_hasConst'':
forall e,
hasConst e = false ->
~ has_const e.
Proof.
unfold not; intros.
destruct (hasConst e) eqn:?.
- discriminate.
- rewrite has_const_hasConst in Heqb.
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction H; simpl; auto;
rewrite orb_true_iff; auto.
Qed.
Lemma not_has_const_hasConst'':
forall e,
~ has_const e ->
hasConst e = false.
Proof.
unfold not; intros.
destruct (hasConst e) eqn:?.
- exfalso. apply H.
apply hasConst_has_const; auto.
- reflexivity.
Qed.
Lemma false_hasConst_hasConst'':
forall e,
hasConst e = false ->
~ has_const e.
Proof.
unfold not; intros.
destruct (hasConst e) eqn:?.
- discriminate.
- rewrite has_const_hasConst in Heqb.
NOTE: we got another subgoal!
* discriminate.
* assumption.
Qed.
* assumption.
Qed.
In general:
Relational defns are nice when you want to use inversion.
Functional defns are nice when you want to use simpl.
This page has been generated by coqdoc