Require Import List.
Require Import String.
Require Import ZArith.
Open Scope string_scope.
Definition var := string.
Inductive Expr : Set :=
| Bool : bool -> Expr
| Int : Z -> Expr
| Var : var -> Expr
| App : Expr -> Expr -> Expr
| Cond : Expr -> Expr -> Expr -> Expr
| Prod : Expr -> Expr -> Expr
| ProjL : Expr -> Expr
| ProjR : Expr -> Expr
| SumL : Expr -> Expr
| SumR : Expr -> Expr
| Match : Expr -> var -> Expr -> var -> Expr -> Expr
| Lam : var -> Expr -> Expr.
Notation "'B' b" := (Bool b) (at level 48).
Notation "'I' i" := (Int i) (at level 48).
Notation "'V' x" := (Var x) (at level 48).
Notation "e1 @ e2" := (App e1 e2) (at level 49).
Notation "'WHEN' e1 'THEN' e2 'ELSE' e3" := (Cond e1 e2 e3) (at level 49).
Notation "<( e1 , e2 )>" := (Prod e1 e2) (at level 49).
Notation "'PL' e" := (ProjL e) (at level 49).
Notation "'PR' e" := (ProjR e) (at level 49).
Notation "'SL' e" := (SumL e) (at level 49).
Notation "'SR' e" := (SumR e) (at level 49).
Notation "'MATCH' e1 'WITH' 'L' v2 ===> e2 | 'R' v3 ===> e3" :=
(Match e1 v2 e2 v3 e3) (at level 49).
Notation "\ x , t" := (Lam x t) (at level 50).
Check (\"x", \"y", V"x").
Check (\"x", \"y", I 5).
Check ((\"x", V"x" @ V"x") @ (\"x", V"x" @ V"x")).
Inductive Subst : Expr -> Expr -> var ->
Expr -> Prop :=
| SubstBool : forall b e x,
Subst (B b) e x (B b)
| SubstInt : forall i e x,
Subst (I i) e x (I i)
| SubstVar_same : forall e x,
Subst (V x) e x e
| SubstVar_diff : forall e x1 x2,
x1 <> x2 ->
Subst (V x1) e x2 (V x1)
| SubstApp : forall eA eB e x eA' eB',
Subst eA e x eA' ->
Subst eB e x eB' ->
Subst (eA @ eB) e x (eA' @ eB')
| SubstCond : forall e1 e2 e3 e x e1' e2' e3',
Subst e1 e x e1' ->
Subst e2 e x e2' ->
Subst e3 e x e3' ->
Subst (WHEN e1 THEN e2 ELSE e3) e x
(WHEN e1' THEN e2' ELSE e3')
| SubstProd: forall e1 e2 e x e1' e2',
Subst e1 e x e1' ->
Subst e2 e x e2' ->
Subst (<(e1, e2)>) e x (<(e1', e2')>)
| SubstProjL: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (PL e1) e x (PL e1')
| SubstProjR: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (PR e1) e x (PL e1')
| SubstSumL: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (SL e1) e x (SL e1')
| SubstSumR: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (SR e1) e x (SR e1')
| SubstMatch_ls_rs:
forall em el er e x em',
Subst em e x em' ->
Subst (MATCH em WITH L x ===> el | R x ===> er) e x
(MATCH em' WITH L x ===> el | R x ===> er)
| SubstMatch_ls_rd:
forall em el vr er e x em' er',
x <> vr ->
Subst em e x em' ->
Subst er e x er' ->
Subst (MATCH em WITH L x ===> el | R vr ===> er) e x
(MATCH em' WITH L x ===> el | R vr ===> er')
| SubstMatch_ld_rs:
forall em vl el er e x em' el',
x <> vl ->
Subst em e x em' ->
Subst el e x el' ->
Subst (MATCH em WITH L vl ===> el | R x ===> er) e x
(MATCH em' WITH L vl ===> el' | R x ===> er)
| SubstMatch_ld_rd:
forall em vl el vr er e x em' el' er',
x <> vl ->
x <> vr ->
Subst em e x em' ->
Subst el e x el' ->
Subst er e x er' ->
Subst (MATCH em WITH L vl ===> el | R vr ===> er) e x
(MATCH em' WITH L vl ===> el' | R vr ===> er')
| SubstLam_same : forall eA e x,
Subst (\x, eA) e x (\x, eA)
| SubstLam_diff : forall eA e x1 x2 eA',
x1 <> x2 ->
Subst eA e x2 eA' ->
Subst (\x1, eA) e x2 (\x1, eA').
Lemma subst_test_1:
Subst (\"x", V"y") (V"z") "y" (\"x", V"z").
Proof.
constructor.
{ discriminate. }
{ constructor. }
Qed.
Lemma subst_test_2:
Subst (\"x", V"x") (V"z") "x"
(\"x", V"x").
Proof.
constructor.
Qed.
Require Import String.
Require Import ZArith.
Open Scope string_scope.
Definition var := string.
Inductive Expr : Set :=
| Bool : bool -> Expr
| Int : Z -> Expr
| Var : var -> Expr
| App : Expr -> Expr -> Expr
| Cond : Expr -> Expr -> Expr -> Expr
| Prod : Expr -> Expr -> Expr
| ProjL : Expr -> Expr
| ProjR : Expr -> Expr
| SumL : Expr -> Expr
| SumR : Expr -> Expr
| Match : Expr -> var -> Expr -> var -> Expr -> Expr
| Lam : var -> Expr -> Expr.
Notation "'B' b" := (Bool b) (at level 48).
Notation "'I' i" := (Int i) (at level 48).
Notation "'V' x" := (Var x) (at level 48).
Notation "e1 @ e2" := (App e1 e2) (at level 49).
Notation "'WHEN' e1 'THEN' e2 'ELSE' e3" := (Cond e1 e2 e3) (at level 49).
Notation "<( e1 , e2 )>" := (Prod e1 e2) (at level 49).
Notation "'PL' e" := (ProjL e) (at level 49).
Notation "'PR' e" := (ProjR e) (at level 49).
Notation "'SL' e" := (SumL e) (at level 49).
Notation "'SR' e" := (SumR e) (at level 49).
Notation "'MATCH' e1 'WITH' 'L' v2 ===> e2 | 'R' v3 ===> e3" :=
(Match e1 v2 e2 v3 e3) (at level 49).
Notation "\ x , t" := (Lam x t) (at level 50).
Check (\"x", \"y", V"x").
Check (\"x", \"y", I 5).
Check ((\"x", V"x" @ V"x") @ (\"x", V"x" @ V"x")).
Inductive Subst : Expr -> Expr -> var ->
Expr -> Prop :=
| SubstBool : forall b e x,
Subst (B b) e x (B b)
| SubstInt : forall i e x,
Subst (I i) e x (I i)
| SubstVar_same : forall e x,
Subst (V x) e x e
| SubstVar_diff : forall e x1 x2,
x1 <> x2 ->
Subst (V x1) e x2 (V x1)
| SubstApp : forall eA eB e x eA' eB',
Subst eA e x eA' ->
Subst eB e x eB' ->
Subst (eA @ eB) e x (eA' @ eB')
| SubstCond : forall e1 e2 e3 e x e1' e2' e3',
Subst e1 e x e1' ->
Subst e2 e x e2' ->
Subst e3 e x e3' ->
Subst (WHEN e1 THEN e2 ELSE e3) e x
(WHEN e1' THEN e2' ELSE e3')
| SubstProd: forall e1 e2 e x e1' e2',
Subst e1 e x e1' ->
Subst e2 e x e2' ->
Subst (<(e1, e2)>) e x (<(e1', e2')>)
| SubstProjL: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (PL e1) e x (PL e1')
| SubstProjR: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (PR e1) e x (PL e1')
| SubstSumL: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (SL e1) e x (SL e1')
| SubstSumR: forall e1 e x e1',
Subst e1 e x e1' ->
Subst (SR e1) e x (SR e1')
| SubstMatch_ls_rs:
forall em el er e x em',
Subst em e x em' ->
Subst (MATCH em WITH L x ===> el | R x ===> er) e x
(MATCH em' WITH L x ===> el | R x ===> er)
| SubstMatch_ls_rd:
forall em el vr er e x em' er',
x <> vr ->
Subst em e x em' ->
Subst er e x er' ->
Subst (MATCH em WITH L x ===> el | R vr ===> er) e x
(MATCH em' WITH L x ===> el | R vr ===> er')
| SubstMatch_ld_rs:
forall em vl el er e x em' el',
x <> vl ->
Subst em e x em' ->
Subst el e x el' ->
Subst (MATCH em WITH L vl ===> el | R x ===> er) e x
(MATCH em' WITH L vl ===> el' | R x ===> er)
| SubstMatch_ld_rd:
forall em vl el vr er e x em' el' er',
x <> vl ->
x <> vr ->
Subst em e x em' ->
Subst el e x el' ->
Subst er e x er' ->
Subst (MATCH em WITH L vl ===> el | R vr ===> er) e x
(MATCH em' WITH L vl ===> el' | R vr ===> er')
| SubstLam_same : forall eA e x,
Subst (\x, eA) e x (\x, eA)
| SubstLam_diff : forall eA e x1 x2 eA',
x1 <> x2 ->
Subst eA e x2 eA' ->
Subst (\x1, eA) e x2 (\x1, eA').
Lemma subst_test_1:
Subst (\"x", V"y") (V"z") "y" (\"x", V"z").
Proof.
constructor.
{ discriminate. }
{ constructor. }
Qed.
Lemma subst_test_2:
Subst (\"x", V"x") (V"z") "x"
(\"x", V"x").
Proof.
constructor.
Qed.
Small Step:
e1 --> e1' --------------------- e1 e2 --> e1' e2 ----------------------------- (\x. e1) e2 --> e1[e2/x]
Inductive SStep : Expr -> Expr -> Prop :=
| Scrunch : forall e1 e1' e2,
SStep e1 e1' ->
SStep (e1 @ e2) (e1' @ e2)
| Ssubst : forall x e1 e2 e1',
Subst e1 e2 x e1' ->
SStep ((\x, e1) @ e2) e1'
| SCond_crunch : forall e1 e1' e2 e3,
SStep e1 e1' ->
SStep (WHEN e1 THEN e2 ELSE e3)
(WHEN e1' THEN e2 ELSE e3)
| SCond_true : forall e2 e3,
SStep (WHEN (B true) THEN e2 ELSE e3) e2
| SCond_false : forall e2 e3,
SStep (WHEN (B false) THEN e2 ELSE e3) e3
| SProjL_crunch : forall e e',
SStep e e' ->
SStep (PL e) (PL e')
| SProjL_proj : forall e1 e2,
SStep (PL <(e1, e2)>) e1
| SProjR_crunch : forall e e',
SStep e e' ->
SStep (PR e) (PR e')
| SProjR_proj : forall e1 e2,
SStep (PR <(e1, e2)>) e2
| SMatch_crunch : forall e e' vl el vr er,
SStep e e' ->
SStep (MATCH e WITH L vl ===> el | R vr ===> er)
(MATCH e' WITH L vl ===> el | R vr ===> er)
| SMatch_l : forall e vl el vr er el',
Subst el e vl el' ->
SStep (MATCH SL e WITH L vl ===> el | R vr ===> er) el'
| SMatch_r : forall e vl el vr er er',
Subst er e vr er' ->
SStep (MATCH SR e WITH L vl ===> el | R vr ===> er) er'.
Notation "e1 --> e2" := (SStep e1 e2) (at level 51).
Inductive SSstar : Expr -> Expr -> Prop :=
| SSrefl : forall e,
SSstar e e
| SSstep : forall e e' e'',
SStep e e' ->
SSstar e' e'' ->
SSstar e e''.
Notation "e1 -->* e2" := (SSstar e1 e2) (at level 51).
Inductive Value : Expr -> Prop :=
| VBool : forall b,
Value (B b)
| VInt : forall i,
Value (I i)
| VLam : forall x e,
Value (\x, e)
| VProd : forall e1 e2,
Value (<(e1, e2)>)
| VSumL : forall e,
Value (SL e)
| VSumR : forall e,
Value (SR e).
Inductive Typ :=
| TBool : Typ
| TInt : Typ
| TFun : Typ -> Typ -> Typ
| TProd : Typ -> Typ -> Typ
| TSum : Typ -> Typ -> Typ.
Notation "t1 ~~> t2" := (TFun t1 t2) (at level 52, right associativity).
Notation "t1 *** t2" := (TProd t1 t2) (at level 52).
Notation "t1 +++ t2" := (TSum t1 t2) (at level 52).
Definition Env := var -> option Typ.
Definition Empty : Env := fun _ => None.
Definition extend (env: Env) x t :=
fun y => if string_dec x y then Some t else env y.
Inductive WellTyped : Env -> Expr -> Typ -> Prop :=
| WTBool : forall env b,
WellTyped env (B b) TBool
| WTInt : forall env i,
WellTyped env (I i) TInt
| WTVar : forall env x t,
env x = Some t ->
WellTyped env (V x) t
| WTLam : forall env x e t1 t2,
WellTyped (extend env x t1) e t2 ->
WellTyped env (\x, e) (t1 ~~> t2)
| WTApp : forall env e1 e2 t1 t2,
WellTyped env e1 (t1 ~~> t2) ->
WellTyped env e2 t1 ->
WellTyped env (e1 @ e2) t2
| WTCond : forall env e e1 e2 t,
WellTyped env e TBool ->
WellTyped env e1 t ->
WellTyped env e2 t ->
WellTyped env (WHEN e THEN e1 ELSE e2) t
| WTProd : forall env e1 t1 e2 t2,
WellTyped env e1 t1 ->
WellTyped env e2 t2 ->
WellTyped env (<(e1, e2)>) (t1 *** t2)
| WTProjL : forall env e t1 t2,
WellTyped env e (t1 *** t2) ->
WellTyped env (PL e) t1
| WTProjR : forall env e t1 t2,
WellTyped env e (t1 *** t2) ->
WellTyped env (PR e) t2
| WTSumL : forall env e t1 t2,
WellTyped env e t1 ->
WellTyped env (SL e) (t1 +++ t2)
| WTSumR : forall env e t1 t2,
WellTyped env e t2 ->
WellTyped env (SR e) (t1 +++ t2)
| WTMatch : forall env e vl el vr er t1 t2 t3,
WellTyped env e (t1 +++ t2) ->
WellTyped (extend env vl t1) el t3 ->
WellTyped (extend env vr t2) er t3 ->
WellTyped env (MATCH e WITH L vl ===> el
| R vr ===> er) t3.
Lemma test_WT_1:
WellTyped Empty
((\"x", V"x") @ (\"y", V"y"))
(TInt ~~> TInt).
Proof.
econstructor.
{ constructor. constructor. reflexivity. }
{ constructor. constructor. reflexivity. }
Qed.
Lemma test_WT_2:
WellTyped Empty
((\"x", V"x") @ (\"y", V"y"))
(TBool ~~> TBool).
Proof.
econstructor.
{ constructor. constructor. reflexivity. }
{ constructor. constructor. reflexivity. }
Qed.
Lemma canon_bool:
forall e,
Value e ->
WellTyped Empty e TBool ->
exists b, e = B b.
Proof.
intros.
inversion H; subst;
inversion H0; subst.
eauto.
Qed.
Lemma canon_int:
forall e,
Value e ->
WellTyped Empty e TInt ->
exists i, e = I i.
Proof.
intros.
inversion H; subst;
inversion H0; subst.
eauto.
Qed.
Lemma cannon_lam:
forall e t1 t2,
Value e ->
WellTyped Empty e (t1 ~~> t2) ->
exists x, exists e', e = \x, e'.
Proof.
intros.
inversion H; subst;
inversion H0; subst.
eauto.
Qed.
Lemma canon_prod:
forall e t1 t2,
Value e ->
WellTyped Empty e (t1 *** t2) ->
exists e1, exists e2, e = <(e1, e2)>.
Proof.
intros.
inversion H; subst;
inversion H0; subst.
eauto.
Qed.
Lemma canon_sum:
forall e t1 t2,
Value e ->
WellTyped Empty e (t1 +++ t2) ->
exists e', e = SL e' \/ e = SR e'.
Proof.
intros.
inversion H; subst;
inversion H0; subst.
eauto. eauto.
Qed.
Lemma Subst_exists:
forall e1 e2 x,
exists e3, Subst e1 e2 x e3.
Proof.
intros. induction e1; firstorder;
try (econstructor; constructor; eauto; fail).
- destruct (string_dec v x); subst;
econstructor; constructor; eauto.
- destruct (string_dec v x);
destruct (string_dec v0 x); subst;
econstructor; constructor; eauto.
- destruct (string_dec v x); subst;
econstructor; constructor; eauto.
Qed.
Lemma progress:
forall e t,
WellTyped Empty e t ->
((exists e', e --> e') \/ Value e).
Proof.
intros. remember Empty.
induction H; subst;
try (right; constructor; auto; fail);
left.
- discriminate.
- destruct IHWellTyped1; auto.
+ destruct H1. econstructor.
constructor; eauto.
+ apply cannon_lam in H; auto.
destruct H. destruct H. subst.
destruct (Subst_exists x0 e2 x).
econstructor. eapply Ssubst; eauto.
- destruct IHWellTyped1; auto.
+ destruct H2. econstructor.
constructor; eauto.
+ apply canon_bool in H; auto.
destruct H; subst. destruct x.
* econstructor. eapply SCond_true; eauto.
* econstructor. eapply SCond_false; eauto.
- destruct IHWellTyped; auto.
+ destruct H0. econstructor.
constructor; eauto.
+ apply canon_prod in H; auto.
destruct H. destruct H. subst.
econstructor; eapply SProjL_proj; eauto.
- destruct IHWellTyped; auto.
+ destruct H0. econstructor.
constructor; eauto.
+ apply canon_prod in H; auto.
destruct H. destruct H. subst.
econstructor; eapply SProjR_proj; eauto.
- destruct IHWellTyped1; auto.
+ destruct H2. econstructor.
constructor; eauto.
+ apply canon_sum in H; auto.
destruct H. destruct H; subst.
* destruct (Subst_exists el x vl); auto.
econstructor. eapply SMatch_l; eauto.
* destruct (Subst_exists er x vr); auto.
econstructor. eapply SMatch_r; eauto.
Qed.
Lemma lkup_extend_same:
forall env x t,
(extend env x t) x = Some t.
Proof.
unfold extend; intros.
destruct (string_dec x x); auto.
congruence.
Qed.
Lemma lkup_extend_diff:
forall env x1 x2 t,
x1 <> x2 ->
(extend env x1 t) x2 = env x2.
Proof.
unfold extend; intros.
destruct (string_dec x1 x2); auto.
congruence.
Qed.
Definition env_equiv (e1 e2: Env) :=
forall x, e1 x = e2 x.
Lemma env_equiv_extend:
forall env1 env2,
env_equiv env1 env2 ->
forall x t,
env_equiv (extend env1 x t)
(extend env2 x t).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x x0); auto.
Qed.
Lemma env_equiv_overwrite:
forall env x t0 t1,
env_equiv (extend env x t1)
(extend (extend env x t0) x t1).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x x0); auto.
Qed.
Lemma env_equiv_extend_diff:
forall env x1 t1 x2 t2,
x1 <> x2 ->
env_equiv (extend (extend env x1 t1) x2 t2)
(extend (extend env x2 t2) x1 t1).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x2 x); subst; auto.
destruct (string_dec x1 x); subst; auto.
congruence.
Qed.
Lemma env_equiv_symmetry:
forall env1 env2,
env_equiv env1 env2 ->
env_equiv env2 env1.
Proof.
congruence.
Qed.
Lemma env_equiv_wt:
forall env1 e te,
WellTyped env1 e te ->
forall env2,
env_equiv env2 env1 ->
WellTyped env2 e te.
Proof.
induction 1; intros;
try (econstructor; eauto; fail).
- constructor; auto. congruence.
- constructor; auto.
apply IHWellTyped.
apply env_equiv_extend; auto.
- econstructor; eauto.
+ apply IHWellTyped2.
apply env_equiv_extend; auto.
+ apply IHWellTyped3.
apply env_equiv_extend; auto.
Qed.
Inductive Free : Expr -> var -> Prop :=
| FVar : forall x,
Free (Var x) x
| FAppL : forall e1 e2 x,
Free e1 x -> Free (App e1 e2) x
| FAppR : forall e1 e2 x,
Free e2 x -> Free (App e1 e2) x
| FLam : forall x1 e1 x,
Free e1 x ->
x <> x1 ->
Free (Lam x1 e1) x
| FCond_cond : forall e1 e2 e3 x,
Free e1 x ->
Free (WHEN e1 THEN e2 ELSE e3) x
| FCond_then : forall e1 e2 e3 x,
Free e2 x ->
Free (WHEN e1 THEN e2 ELSE e3) x
| FCond_else : forall e1 e2 e3 x,
Free e3 x ->
Free (WHEN e1 THEN e2 ELSE e3) x
| FProdl : forall e1 e2 x,
Free e1 x ->
Free (<(e1, e2)>) x
| FProdr : forall e1 e2 x,
Free e2 x ->
Free (<(e1, e2)>) x
| FProjL : forall e x,
Free e x ->
Free (PL e) x
| FProjR : forall e x,
Free e x ->
Free (PR e) x
| FSumL : forall e x,
Free e x ->
Free (SL e) x
| FSumR : forall e x,
Free e x ->
Free (SR e) x
| FMatchM : forall e vl el vr er x,
Free e x ->
Free (MATCH e WITH L vl ===> el | R vr ===> er) x
| FMatchL : forall e vl el vr er x,
x <> vl ->
Free el x ->
Free (MATCH e WITH L vl ===> el | R vr ===> er) x
| FMatchR : forall e vl el vr er x,
x <> vr ->
Free er x ->
Free (MATCH e WITH L vl ===> el | R vr ===> er) x.
Lemma not_free_app_inv:
forall e1 e2 x,
~ Free (e1 @ e2) x ->
~ Free e1 x /\ ~ Free e2 x.
Proof.
intros. split.
- intro. apply H.
apply FAppL; auto.
- intro. apply H.
apply FAppR; auto.
Qed.
Lemma not_free_cond_inv:
forall e1 e2 e3 x,
~ Free (WHEN e1 THEN e2 ELSE e3) x ->
(~ Free e1 x) /\ (~ Free e2 x) /\ (~ Free e3 x).
Proof.
unfold not; firstorder.
- apply H; apply FCond_cond; auto.
- apply H; apply FCond_then; auto.
- apply H; apply FCond_else; auto.
Qed.
Lemma not_free_prod_inv:
forall e1 e2 x,
~ Free (<(e1, e2)>) x ->
~ Free e1 x /\ ~ Free e2 x.
Proof.
unfold not; firstorder.
- apply H; apply FProdl; auto.
- apply H; apply FProdr; auto.
Qed.
Lemma not_free_pl_inv:
forall e x,
~ Free (PL e) x ->
~ Free e x.
Proof.
unfold not; firstorder.
apply H. apply FProjL; auto.
Qed.
Lemma not_free_pr_inv:
forall e x,
~ Free (PR e) x ->
~ Free e x.
Proof.
unfold not; firstorder.
apply H. apply FProjR; auto.
Qed.
Lemma not_free_sl_inv:
forall e x,
~ Free (SL e) x ->
~ Free e x.
Proof.
unfold not; firstorder.
apply H. apply FSumL; auto.
Qed.
Lemma not_free_sr_inv:
forall e x,
~ Free (SR e) x ->
~ Free e x.
Proof.
unfold not; firstorder.
apply H. apply FSumR; auto.
Qed.
Lemma not_free_match_inv:
forall e1 v2 e2 v3 e3 x,
~ Free (MATCH e1 WITH L v2 ===> e2 | R v3 ===> e3) x ->
(~ Free e1 x) /\
(v2 <> x -> ~ Free e2 x) /\
(v3 <> x -> ~ Free e3 x).
Proof.
unfold not; firstorder.
- apply H; apply FMatchM; auto.
- apply H; apply FMatchL; auto.
- apply H; apply FMatchR; auto.
Qed.
This page has been generated by coqdoc