Require Import List.
Require Import String.
Require Import ZArith.
Open Scope string_scope.
Definition var := string.
Inductive Expr : Set :=
| Bool : bool -> Expr
| Int : Z -> Expr
| Var : var -> Expr
| App : Expr -> Expr -> Expr
| Lam : var -> Expr -> Expr.
Notation "'B' b" := (Bool b) (at level 48).
Notation "'I' i" := (Int i) (at level 48).
Notation "'V' x" := (Var x) (at level 48).
Notation "e1 @ e2" := (App e1 e2) (at level 49).
Notation "\ x , t" := (Lam x t) (at level 50).
Check (\"x", \"y", V"x").
Check (\"x", \"y", I 5).
Check ((\"x", V"x" @ V"x") @ (\"x", V"x" @ V"x")).
Inductive Subst : Expr -> Expr -> var ->
Expr -> Prop :=
| SubstBool : forall b e x,
Subst (B b) e x (B b)
| SubstInt : forall i e x,
Subst (I i) e x (I i)
| SubstVar_same : forall e x,
Subst (V x) e x e
| SubstVar_diff : forall e x1 x2,
x1 <> x2 ->
Subst (V x1) e x2 (V x1)
| SubstApp : forall eA eB e x eA' eB',
Subst eA e x eA' ->
Subst eB e x eB' ->
Subst (eA @ eB) e x (eA' @ eB')
| SubstLam_same : forall eA e x,
Subst (\x, eA) e x (\x, eA)
| SubstLam_diff : forall eA e x1 x2 eA',
x1 <> x2 ->
Subst eA e x2 eA' ->
Subst (\x1, eA) e x2 (\x1, eA').
Lemma subst_test_1:
Subst (\"x", V"y") (V"z") "y" (\"x", V"z").
Proof.
constructor.
{ discriminate. }
{ constructor. }
Qed.
Lemma subst_test_2:
Subst (\"x", V"x") (V"z") "x"
(\"x", V"x").
Proof.
constructor.
Qed.
Require Import String.
Require Import ZArith.
Open Scope string_scope.
Definition var := string.
Inductive Expr : Set :=
| Bool : bool -> Expr
| Int : Z -> Expr
| Var : var -> Expr
| App : Expr -> Expr -> Expr
| Lam : var -> Expr -> Expr.
Notation "'B' b" := (Bool b) (at level 48).
Notation "'I' i" := (Int i) (at level 48).
Notation "'V' x" := (Var x) (at level 48).
Notation "e1 @ e2" := (App e1 e2) (at level 49).
Notation "\ x , t" := (Lam x t) (at level 50).
Check (\"x", \"y", V"x").
Check (\"x", \"y", I 5).
Check ((\"x", V"x" @ V"x") @ (\"x", V"x" @ V"x")).
Inductive Subst : Expr -> Expr -> var ->
Expr -> Prop :=
| SubstBool : forall b e x,
Subst (B b) e x (B b)
| SubstInt : forall i e x,
Subst (I i) e x (I i)
| SubstVar_same : forall e x,
Subst (V x) e x e
| SubstVar_diff : forall e x1 x2,
x1 <> x2 ->
Subst (V x1) e x2 (V x1)
| SubstApp : forall eA eB e x eA' eB',
Subst eA e x eA' ->
Subst eB e x eB' ->
Subst (eA @ eB) e x (eA' @ eB')
| SubstLam_same : forall eA e x,
Subst (\x, eA) e x (\x, eA)
| SubstLam_diff : forall eA e x1 x2 eA',
x1 <> x2 ->
Subst eA e x2 eA' ->
Subst (\x1, eA) e x2 (\x1, eA').
Lemma subst_test_1:
Subst (\"x", V"y") (V"z") "y" (\"x", V"z").
Proof.
constructor.
{ discriminate. }
{ constructor. }
Qed.
Lemma subst_test_2:
Subst (\"x", V"x") (V"z") "x"
(\"x", V"x").
Proof.
constructor.
Qed.
Small Step:
e1 --> e1' --------------------- e1 e2 --> e1' e2 ----------------------------- (\x. e1) e2 --> e1[e2/x]
Inductive SStep : Expr -> Expr -> Prop :=
| Scrunch : forall e1 e1' e2,
SStep e1 e1' ->
SStep (e1 @ e2) (e1' @ e2)
| Ssubst : forall x e1 e2 e1',
Subst e1 e2 x e1' ->
SStep ((\x, e1) @ e2) e1'.
Notation "e1 --> e2" := (SStep e1 e2) (at level 51).
Inductive SSstar : Expr -> Expr -> Prop :=
| SSrefl : forall e,
SSstar e e
| SSstep : forall e e' e'',
SStep e e' ->
SSstar e' e'' ->
SSstar e e''.
Notation "e1 -->* e2" := (SSstar e1 e2) (at level 51).
Inductive Value : Expr -> Prop :=
| VBool : forall b,
Value (B b)
| VInt : forall i,
Value (I i)
| VLam : forall x e,
Value (\x, e).
Inductive Typ :=
| TBool : Typ
| TInt : Typ
| TFun : Typ -> Typ -> Typ.
Notation "t1 ~> t2" := (TFun t1 t2) (at level 52).
Definition Env := var -> option Typ.
Definition Empty : Env := fun _ => None.
Definition extend (env: Env) x t :=
fun y => if string_dec x y then Some t else env y.
Inductive WellTyped : Env -> Expr -> Typ -> Prop :=
| WTBool : forall env b,
WellTyped env (B b) TBool
| WTInt : forall env i,
WellTyped env (I i) TInt
| WTVar : forall env x t,
env x = Some t ->
WellTyped env (V x) t
| WTLam : forall env x e t1 t2,
WellTyped (extend env x t1) e t2 ->
WellTyped env (\x, e) (t1 ~> t2)
| WTApp : forall env e1 e2 t1 t2,
WellTyped env e1 (t1 ~> t2) ->
WellTyped env e2 t1 ->
WellTyped env (e1 @ e2) t2.
Lemma test_WT_1:
WellTyped Empty
((\"x", V"x") @ (\"y", V"y"))
(TInt ~> TInt).
Proof.
econstructor.
{ constructor. constructor. reflexivity. }
{ constructor. constructor. reflexivity. }
Qed.
Lemma test_WT_2:
WellTyped Empty
((\"x", V"x") @ (\"y", V"y"))
(TBool ~> TBool).
Proof.
econstructor.
{ constructor. constructor. reflexivity. }
{ constructor. constructor. reflexivity. }
Qed.
Lemma canon_bool:
forall e,
Value e ->
WellTyped Empty e TBool ->
exists b, e = B b.
Proof.
intros. inversion H.
{ eauto. }
{ subst. inversion H0. }
{ subst. inversion H0. }
Qed.
Lemma canon_int:
forall e,
Value e ->
WellTyped Empty e TInt ->
exists i, e = I i.
Proof.
Admitted.
Lemma cannon_lam:
forall e t1 t2,
Value e ->
WellTyped Empty e (t1 ~> t2) ->
exists x, exists e', e = \x, e'.
Proof.
Admitted.
Lemma Subst_exists:
forall e1 e2 x,
exists e3, Subst e1 e2 x e3.
Proof.
intros. induction e1.
{ econstructor. constructor. }
{ econstructor. constructor. }
{ destruct (string_dec v x).
{ subst. econstructor. constructor. }
{ econstructor. constructor. assumption. }
}
{ firstorder. econstructor. constructor.
{ eassumption. }
{ eassumption. }
}
{ destruct (string_dec v x).
{ subst. econstructor. constructor. }
{ firstorder. econstructor. constructor.
{ assumption. }
{ eassumption. }
}
}
Qed.
Lemma progress:
forall e t,
WellTyped Empty e t ->
((exists e', e --> e') \/ Value e).
Proof.
intros. remember Empty. induction H.
{ right. constructor. }
{ right. constructor. }
{ subst. discriminate. }
{ right. constructor. }
{ subst. destruct IHWellTyped1.
{ reflexivity. }
{ destruct H1. left. econstructor. left. eassumption. }
{ left. eapply cannon_lam in H1.
{ destruct H1. destruct H1. subst.
destruct (Subst_exists x0 e2 x).
econstructor. right. eassumption. }
{ eassumption. }
}
}
Qed.
Lemma lkup_extend_same:
forall env x t,
(extend env x t) x = Some t.
Proof.
unfold extend; intros.
destruct (string_dec x x); auto.
congruence.
Qed.
Lemma lkup_extend_diff:
forall env x1 x2 t,
x1 <> x2 ->
(extend env x1 t) x2 = env x2.
Proof.
unfold extend; intros.
destruct (string_dec x1 x2); auto.
congruence.
Qed.
Definition env_equiv (e1 e2: Env) :=
forall x, e1 x = e2 x.
Lemma env_equiv_extend:
forall env1 env2,
env_equiv env1 env2 ->
forall x t,
env_equiv (extend env1 x t)
(extend env2 x t).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x x0); auto.
Qed.
Lemma env_equiv_overwrite:
forall env x t0 t1,
env_equiv (extend env x t1)
(extend (extend env x t0) x t1).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x x0); auto.
Qed.
Lemma env_equiv_extend_diff:
forall env x1 t1 x2 t2,
x1 <> x2 ->
env_equiv (extend (extend env x1 t1) x2 t2)
(extend (extend env x2 t2) x1 t1).
Proof.
unfold env_equiv, extend; intros.
destruct (string_dec x2 x); subst; auto.
destruct (string_dec x1 x); subst; auto.
congruence.
Qed.
Lemma env_equiv_symmetry:
forall env1 env2,
env_equiv env1 env2 ->
env_equiv env2 env1.
Proof.
congruence.
Qed.
Lemma env_equiv_wt:
forall env1 e te,
WellTyped env1 e te ->
forall env2,
env_equiv env2 env1 ->
WellTyped env2 e te.
Proof.
induction 1; intros env2 Hequiv.
- constructor; auto.
- constructor; auto.
- constructor; auto.
congruence.
- constructor; auto.
apply IHWellTyped.
apply env_equiv_extend; auto.
- econstructor; eauto.
Qed.
Inductive Free : Expr -> var -> Prop :=
| FVar : forall x,
Free (Var x) x
| FAppL : forall e1 e2 x,
Free e1 x -> Free (App e1 e2) x
| FAppR : forall e1 e2 x,
Free e2 x -> Free (App e1 e2) x
| FLam : forall x1 e1 x,
Free e1 x ->
x <> x1 ->
Free (Lam x1 e1) x.
Lemma not_free_app_inv:
forall e1 e2 x,
~ Free (e1 @ e2) x ->
~ Free e1 x /\ ~ Free e2 x.
Proof.
intros. split.
- intro. apply H.
apply FAppL; auto.
- intro. apply H.
apply FAppR; auto.
Qed.
Lemma strengthen:
forall e x,
~ Free e x ->
forall env tx te,
WellTyped (extend env x tx) e te ->
WellTyped env e te.
Proof.
induction e; intros;
inversion H0; subst.
- constructor.
- constructor.
- constructor.
unfold extend in H3.
destruct (string_dec x v); subst.
+ destruct H. constructor.
+ assumption.
- apply not_free_app_inv in H. destruct H.
econstructor; eauto.
- constructor.
destruct (string_dec v x); subst.
+ eapply env_equiv_wt; eauto.
apply env_equiv_overwrite.
+ eapply IHe; eauto.
* intro. apply H.
constructor; auto.
eassumption.
* eapply env_equiv_wt; eauto.
apply env_equiv_extend_diff; auto.
Qed.
Lemma weaken:
forall e x,
~ Free e x ->
forall env tx te,
WellTyped env e te ->
WellTyped (extend env x tx) e te.
Proof.
induction e; intros;
inversion H0; subst.
- constructor.
- constructor.
- constructor.
unfold extend.
destruct (string_dec x v); subst.
+ destruct H. constructor.
+ assumption.
- apply not_free_app_inv in H. destruct H.
econstructor; eauto.
- constructor.
destruct (string_dec v x); subst.
+ eapply env_equiv_wt; eauto.
apply env_equiv_symmetry.
apply env_equiv_overwrite.
+ eapply IHe in H5; eauto.
* eapply env_equiv_wt; eauto.
apply env_equiv_extend_diff; auto.
* intro. apply H.
constructor; auto.
Qed.
Lemma subst_preserve_wt:
forall e1 e2 x e1',
Subst e1 e2 x e1' ->
forall env te2 te1,
WellTyped (extend env x te2) e1 te1 ->
WellTyped env e2 te2 ->
(forall v, ~ Free e2 v) ->
WellTyped env e1' te1.
Proof.
induction 1; intros.
- inversion H; subst.
constructor; auto.
- inversion H; subst.
constructor; auto.
- inversion H; subst.
rewrite lkup_extend_same in H4.
inversion H4; subst. auto.
- inversion H0; subst.
rewrite lkup_extend_diff in H5; auto.
constructor; auto.
- inversion H1; subst.
econstructor; eauto.
- inversion H; subst.
constructor; auto.
eapply env_equiv_wt; eauto.
apply env_equiv_overwrite.
- inversion H1; subst.
constructor; auto.
eapply IHSubst; eauto.
+ eapply env_equiv_wt; eauto.
eapply env_equiv_extend_diff; auto.
+ eapply weaken; eauto.
Qed.
Definition closed e :=
forall v, ~ Free e v.
Lemma closed_app_inv:
forall e1 e2,
closed (e1 @ e2) ->
closed e1 /\ closed e2.
Proof.
unfold closed; split; intros; intro.
- edestruct H; eauto.
apply FAppL; eauto.
- edestruct H; eauto.
apply FAppR; eauto.
Qed.
Lemma closed_app_intro:
forall e1 e2,
closed e1 ->
closed e2 ->
closed (e1 @ e2).
Proof.
unfold closed; intros; intro.
inversion H1; subst.
- firstorder.
- firstorder.
Qed.
Lemma preserve:
forall env e t,
WellTyped env e t ->
closed e ->
forall e',
e --> e' ->
WellTyped env e' t.
Proof.
induction 1; intros.
- inversion H0.
- inversion H0.
- inversion H1.
- inversion H1.
- apply closed_app_inv in H1; destruct H1.
inversion H2; subst.
+ econstructor; eauto.
+ inversion H; subst.
eapply subst_preserve_wt; eauto.
Qed.
Lemma not_free_subst:
forall e1 e2 x e1',
Subst e1 e2 x e1' ->
forall v,
~ Free (\x, e1) v ->
~ Free e2 v ->
~ Free e1' v.
Proof.
induction 1; intros; intro.
- inversion H1.
- inversion H1.
- contradiction.
- inversion H2; subst.
apply H0. constructor; auto.
- inversion H3; subst.
+ edestruct IHSubst1; eauto.
intros; intro. inversion H4; subst.
apply H1. constructor; auto.
apply FAppL; auto.
+ edestruct IHSubst2; eauto.
intros; intro. inversion H4; subst.
apply H1. constructor; auto.
apply FAppR; auto.
- inversion H1; subst.
apply H. constructor; auto.
- inversion H3; subst.
edestruct IHSubst; eauto.
intros; intro. inversion H4; subst.
apply H1.
constructor; auto.
constructor; auto.
Qed.
Lemma closed_subst:
forall e1 e2 x e1',
Subst e1 e2 x e1' ->
closed (\x, e1) ->
closed e2 ->
closed e1'.
Proof.
unfold closed; intros; intro.
edestruct not_free_subst; eauto.
Qed.
Lemma closed_step:
forall e e',
e --> e' ->
closed e ->
closed e'.
Proof.
induction 1; intros.
- apply closed_app_inv in H0; destruct H0.
apply closed_app_intro; auto.
- apply closed_app_inv in H0; destruct H0.
eapply closed_subst; eauto.
Qed.
Lemma preserve_star:
forall e e',
e -->* e' ->
closed e ->
forall env t,
WellTyped env e t ->
WellTyped env e' t.
Proof.
induction 1; intros.
- auto.
- apply IHSSstar.
+ eapply closed_step; eauto.
+ eapply preserve; eauto.
Qed.
Lemma soundness:
forall e t,
WellTyped Empty e t ->
closed e ->
forall e',
e -->* e' ->
(exists e'', e' --> e'') \/ Value e'.
Proof.
intros. induction H1.
- eapply progress. eassumption.
- destruct IHSSstar; auto.
+ eapply preserve; eauto.
+ eapply closed_step; eauto.
Qed.
This page has been generated by coqdoc