If you have inquiries about the course or would like to explore the machine learning curriculum further, reach out to Vinitra at vinitra@cs.washington.edu.
Case Study: Regression
Week 1: Introduction / Regression
Linear Regression
Optional:
-
[Schafer] Python Review
-
[ESL] Section 1, 2.3.1
Assessing Performance
Bias + Variance Tradeoff
-
Slides
:
pdf
-
Annotated
:
pdf
-
Train a Model
:
demo
-
Model Complexity
:
demo
Optional:
-
[ESL] Section 2.3.1, 7.1-7.4
Section 1
(Thur, June 25)
Course Infrastructure / Pandas
-
Slides
:
pdf
-
Pandas Intro
:
demo
-
[Sol] Pandas Intro
:
demo
Week 2: Assessing Performance
Regularization: Ridge
-
Slides
:
pdf
-
Annotated
:
pdf
-
Ridge Visualization
:
demo
Optional:
-
[ESL] Section 3.1-3.2, 3.4.1
-
[ESL] Section 7.1-7.4
Regularization: LASSO, Feature selection
-
Slides
:
pdf
-
Annotated
:
pdf
-
MLE Derivation
:
pdf
-
LASSO Visualization
:
demo
Optional:
-
[Schafer] MLE Notes
-
[ESL] Section 2.9, 5.5.2, 7.2
-
[ESL] Section 3.4.2, 7.10
Section 2
(Thur, July 02)
Gradient Descent
-
Function Properties, Gradient Descent
:
demo
Case Study: Classification
Classification
Optional:
-
[ESL] Section 1, 2.3.1, 4.1-4.2
-
[FoML] Section 3.3
MLE / Logistic Regression
-
Slides
:
pdf
-
Annotated
:
pdf
-
Sigmoid Function
:
demo
Optional:
-
[ESL] Section 4.4.1-4.4.4, 9.1.2, 7.5-7.6
Section 3
(Thur, July 09)
Classification / Logistic Regression
-
Slides
:
pdf
-
Problems
:
pdf
-
Logistic Regression
:
demo
Naive Bayes / Decision Trees
Section 4
(Thur, July 16)
Trees and Ensemble Models
-
Slides
:
pdf
-
Gini Impurity
:
pdf
-
Random Forest
:
demo
Case Study: Clustering and Similarity
Week 5: Non-Parametric Methods
Precisions + Recall / kNN
Lecture 10
(Wed, July 22)
Kernel Methods
Locality Sensitive Hashing
Section 5
(Thur, July 23)
Kaggle Setup
Precision/Recall + Local Methods
-
Kaggle Intro
:
demo
-
Bagging, Boosting, Precision, Recall
:
demo
Lecture 11
(Mon, July 27)
Clustering
Lecture 12
(Wed, July 29)
Hierarchical Clustering
-
Slides
:
pdf
-
Annotated
:
pdf
-
Missing Data
:
pdf
-
Annotated
:
pdf
Optional:
-
[Colab] Methods Review
-
[ESL] Section 14.3.12, 9.6
Section 6
(Thur, July 30)
Numpy, Variable Encoding, and Clustering
-
Slides
:
pdf
-
NumPy Tutorial
:
demo
-
Variable Encoding
:
demo
Case Study: Deep Learning
Deep Learning
Convolutional Neural Networks
Deep Learning
-
Slides
:
pdf
-
PyTorch Overview
:
demo
Case Study: Recommender Systems
Week 8: Recommender Systems
PCA / Recommender Systems Intro
Recommender Systems / Matrix Factorization
PCA
Recommender Systems
Final Exam Review
Week 9: Wrap Up / Final Exam
Explainability in Machine Learning / Ethics / Course Review