
5/2/18

1

STAT/CSE 416: Intro to Machine Learning

Using multiple tables for even
greater efficiency in NN search

©2018 Emily Fox

OPTIONAL

STAT/CSE 416: Intro to Machine Learning2

If I throw down 2 lines…

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

…
Line 1

Line 2
Bin index:
[0 0] Bin index:

[0 1]

Bin index:
[1 1]Bin index:

[1 0]

For simplicity, assume we search
bins 1 bit off from query

Let δ be the probability of a line
falling between points θ apart

Search 3 bins and do not
find NN with probability δ2

5/2/18

2

STAT/CSE 416: Intro to Machine Learning3

What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

STAT/CSE 416: Intro to Machine Learning4

What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Now, search
only query bin
per table

Still searching 3
bins, but what is
chance of not
finding NN?

Line 1

Line 2
Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

5/2/18

3

STAT/CSE 416: Intro to Machine Learning5

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

What is chance
that query pt
and NN are split
in all tables?

Line 1

Line 2
Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

STAT/CSE 416: Intro to Machine Learning6

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Probability of splitting
neighboring points many times

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Probability NN is
in different bin:

Prob = 1-Pr(same bin)
= 1-(1-δ)2

= 2δ - δ2

5/2/18

4

STAT/CSE 416: Intro to Machine Learning7

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Probability of splitting
neighboring points many times

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Probability NN is
in different bin in
all 3 tables:

Prob = (2δ - δ2)3

STAT/CSE 416: Intro to Machine Learning8

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k k

Comparing approaches
for 2-bit tables

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k kBin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

bins
searched

prob. of
no NN

3

3 (2δ - δ2)3

δ2

5/2/18

5

STAT/CSE 416: Intro to Machine Learning9

Comparing probabilities

©2018 Emily Fox

(2δ - δ2)3
δ2

STAT/CSE 416: Intro to Machine Learning10

If I throw down h lines…

©2018 Emily Fox

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

#awesome

#
aw

fu
l

0 1 2 3 4 …
0
1
2
3
4
… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Still assume we search bins 1 bit off from query

Prob. of being > 1 bit away
= 1-Pr(same bin)-Pr(1 bin away)
= 1-Pr(no split lines)-Pr(1 split line)
= 1-(1-δ)h-hδ(1-δ)h-1

5/2/18

6

STAT/CSE 416: Intro to Machine Learning11

If I throw down h lines…

©2018 Emily Fox

Search h+1 bins and do not find NN
with probability 1-(1-δ)h-hδ(1-δ)h-1

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

#awesome

#
aw

fu
l

0 1 2 3 4 …
0
1
2
3
4
… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Still assume we search bins 1 bit off from query

Prob. of being > 1 bit away
= 1-Pr(same bin)-Pr(1 bin away)
= 1-Pr(no split lines)-Pr(1 split line)
= 1-(1-δ)h-hδ(1-δ)h-1

STAT/CSE 416: Intro to Machine Learning12

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Probability of splitting
neighboring points many times

©2018 Emily Fox

Probability NN is
in different bin in
all h+1 tables
= (1-Pr(same bin))h+1

= (1-Pr(no split line))h+1

= (1-(1-δ)h)h+1

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

5/2/18

7

STAT/CSE 416: Intro to Machine Learning13

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k k

Comparing approaches
for h-bit tables

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k kBin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

bins
searched

prob. of
no NN

h+1

(1-(1-δ)h)h+1

1-(1-δ)h-hδ(1-δ)h-1

h+1

STAT/CSE 416: Intro to Machine Learning14

Comparing probabilities

©2018 Emily Fox

(1-(1-δ)h)h+1
1-(1-δ)h-hδ(1-δ)h-1

h = 3

h = 10

5/2/18

8

STAT/CSE 416: Intro to Machine Learning15

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Fix #bits and increase depth

©2018 Emily Fox

Probability NN is
in different bin in
all tables falls off
exponentially fast

Prob
= (1-Pr(same bin))m+1

= (1-Pr(no split line))m+1

= (1-(1-δ)h)m+1

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

STAT/CSE 416: Intro to Machine Learning16

Bin [0 0 0]
= 0

[0 0 1]
= 1

[0 1 0]
= 2

[0 1 1]
= 3

[1 0 0]
= 4

[1 0 1]
= 5

[1 1 0]
= 6

[1 1 1]
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Fix #bits and increase depth

©2018 Emily Fox

Typically higher
probability of
finding NN than
searching m bins
in 1 table

5/2/18

9

STAT/CSE 416: Intro to Machine Learning17

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k k

Summary of LSH approaches

©2018 Emily Fox

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Bin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

pts k k k kBin [0 0] =
0

[0 1] =
1

[1 0] =
2

[1 1] =
3

indices L0 L1 L2 L3

Cost of binning points is lower,
but likely need to search

more bins per query

Cost of binning points is higher,
but likely need to search

fewer bins per query

STAT/CSE 416: Intro to Machine Learning

KD-trees

©2018 Emily Fox

OPTIONAL

5/2/18

10

STAT/CSE 416: Intro to Machine Learning19

Structured organization of documents
- Recursively partitions points

into axis aligned boxes.

Enables more efficient
pruning of search space

Works “well” in “low-medium” dimensions
- We’ll get back to this…

KD-trees

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning20

KD-tree construction

©2018 Emily Fox

Start with a list of
d-dimensional points.

Pt x[1] x[2]

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

5/2/18

11

STAT/CSE 416: Intro to Machine Learning21

KD-tree construction

©2018 Emily Fox

x[1]
>.5

Split points into 2 groups

Split dimension

Split value

YESNO
Pt x[1] x[2]

1 0.00 0.00

3 0.13 2.85

… … …

Pt x[1] x[2]

2 1.00 4.31

… … …

STAT/CSE 416: Intro to Machine Learning22

KD-tree construction

©2018 Emily Fox

x[1]
>.5

Recurse on each group
separately

Split dimension

Split value

YESNO
Pt x[1] x[2]

1 0.00 0.00

3 0.13 2.85

… … …

Pt x[1] x[2]

2 1.00 4.31

… … …

5/2/18

12

STAT/CSE 416: Intro to Machine Learning23

KD-tree construction

©2018 Emily Fox

x[1]
>.5

Recurse on each group
separately

Split dim 1

Split value 2

x[2]
>.1

Split dim 2

Split value 2

YESNO

NO

Pt x[1] x[2]

2 1.00 4.31

… … …
YES

Pt x[1] x[2]

1 0.00 0.00

… … …

Pt x[1] x[2]

3 0.13 2.85

… … …

STAT/CSE 416: Intro to Machine Learning24

KD-tree construction

©2018 Emily Fox

Continue splitting points at each set
- Creates a binary tree structure

Each leaf node contains a list of points

5/2/18

13

STAT/CSE 416: Intro to Machine Learning25

KD-tree construction

©2018 Emily Fox

Keep one additional piece of info at each node:
- The (tight) bounds of points at or below node

STAT/CSE 416: Intro to Machine Learning26

KD-tree construction choices

Use heuristics to make splitting decisions:
-Which dimension do we split along?

-Which value do we split at?

-When do we stop?

©2018 Emily Fox

5/2/18

14

STAT/CSE 416: Intro to Machine Learning27

Many heuristics…

©2018 Emily Fox

median heuristic center-of-range
heuristic

STAT/CSE 416: Intro to Machine Learning

NN search with KD-trees

©2018 Emily Fox

OPTIONAL

5/2/18

15

STAT/CSE 416: Intro to Machine Learning29

Nearest neighbor with KD-trees

©2018 Emily Fox

Traverse tree looking for nearest neighbor to query point

STAT/CSE 416: Intro to Machine Learning30

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point

5/2/18

16

STAT/CSE 416: Intro to Machine Learning31

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point

STAT/CSE 416: Intro to Machine Learning32

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point

5/2/18

17

STAT/CSE 416: Intro to Machine Learning33

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

STAT/CSE 416: Intro to Machine Learning34

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

Does nearest neighbor have to live at
leaf node containing query point?

5/2/18

18

STAT/CSE 416: Intro to Machine Learning35

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

STAT/CSE 416: Intro to Machine Learning36

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

Update distance bound when new
nearest neighbor is found

5/2/18

19

STAT/CSE 416: Intro to Machine Learning37 ©2018 Emily Fox

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor

STAT/CSE 416: Intro to Machine Learning38

Nearest neighbor with KD-trees

©2018 Emily Fox

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor

5/2/18

20

STAT/CSE 416: Intro to Machine Learning39

Nearest neighbor with KD-trees

©2018 Emily Fox

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor

STAT/CSE 416: Intro to Machine Learning40

Complexity

For (nearly) balanced, binary trees...
• Construction
- Size:
- Depth:
- Median + send points left right:
- Construction time:

• 1-NN query
- Traverse down tree to starting point:
- Maximum backtrack and traverse:
- Complexity range:

Under some assumptions on distribution of points,
we get O(logN) but exponential in d

©2018 Emily Fox

5/2/18

21

STAT/CSE 416: Intro to Machine Learning41

Complexity

©2018 Emily Fox

pruned many
(closer to O(log N))

pruned few
(closer to O(N))

STAT/CSE 416: Intro to Machine Learning42

Complexity for N queries

• Ask for nearest neighbor to each doc

• Brute force 1-NN:

• kd-trees:

©2018 Emily Fox

5/2/18

22

STAT/CSE 416: Intro to Machine Learning43

Inspections vs. N and d

©2018 Emily Fox

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

#
 in

sp
ec

tio
n

s

N

#
 in

sp
ec

tio
n

s

d

log(N) trend

exp(d) trend

STAT/CSE 416: Intro to Machine Learning44

k-NN with KD-trees

©2018 Emily Fox

distance to 2nd nearest neighbor
in 2-NN example

Exactly same algorithm, but maintain distance to
furthest of current k nearest neighbors

5/2/18

23

STAT/CSE 416: Intro to Machine Learning

Approximate k-NN search

©2018 Emily Fox

OPTIONAL

STAT/CSE 416: Intro to Machine Learning46

Approximate k-NN with KD-trees

©2018 Emily Fox

Before: Prune when distance to bounding box > r
Now: Prune when distance to bounding box > r/α

Prunes more than allowed, but can guarantee that if we return a
neighbor at distance r, then there is no neighbor closer than r/α

Saves lots of search
time at little cost in

quality of NN!

Bound loose…In practice, often closer to optimal.

5/2/18

24

STAT/CSE 416: Intro to Machine Learning47

Closing remarks on KD-trees
Tons of variants of kd-trees

- On construction of trees
(heuristics for splitting, stopping, representing branches…)

- Other representational data structures for fast NN search
(e.g., ball trees,…)

Nearest Neighbor Search
- Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!
- Number of kd-tree searches can be exponential in dimension

• Rule of thumb… N >> 2d… Typically useless for large d.

- Distances sensitive to irrelevant features
• Most dimensions are just noise à everything is far away
• Need technique to learn which features are important to given task

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning48

Motivating alternative approaches to
approximate NN search
• KD-trees are cool, but…
- Non-trivial to implement efficiently

- Problems with high-dimensional data

©2018 Emily Fox

5/2/18

25

STAT/CSE 416: Intro to Machine Learning49

KD-trees in high dimensions

©2018 Emily Fox

• Unlikely to have any data points
close to query point

• Once “nearby” point is found,
the search radius is likely to
intersect many hypercubes
in at least one dim

• Not many nodes can be pruned

• Can show under some conditions
that you visit at least 2d nodes

STAT/CSE 416: Intro to Machine Learning50

Acknowledgements

Thanks to Andrew Moore
(http://www.cs.cmu.edu/~awm/)
for the KD-trees slide outline

©2018 Emily Fox

http://www.cs.cmu.edu/~awm/

