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STAT/CSE 416: Intro to Machine Learning

Using multiple tables for even 
greater efficiency in NN search

©2018 Emily Fox

OPTIONAL

STAT/CSE 416: Intro to Machine Learning2

If I throw down 2 lines…

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

…
Line 1

Line 2
Bin index:
[0 0] Bin index:

[0 1]

Bin index:
[1 1]Bin index:

[1 0]

For simplicity, assume we search 
bins 1 bit off from query

Let δ be the probability of a line 
falling between points θ apart 

Search 3 bins and do not
find NN with probability δ2
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What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3
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What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Now, search 
only query bin 
per table

Still searching 3 
bins, but what is 
chance of not 
finding NN?

Line 1

Line 2
Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]
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Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

What if I repeat the 2-line binning?

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

What is chance 
that query pt
and NN are split 
in all tables?

Line 1

Line 2
Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]
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Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Probability of splitting 
neighboring points many times

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Probability NN is 
in different bin:

Prob = 1-Pr(same bin)
= 1-(1-δ)2

= 2δ - δ2
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Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Probability of splitting 
neighboring points many times

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Line 1

Line 2
Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Line 1

Line 2Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]

Bin index:
[1 0]

Line 1

Line 2

Bin 
index:
[0 0]

Bin index:
[0 1]

Bin index:
[1 1]Bin index:

[1 0]

Probability NN is 
in different bin in 
all 3 tables:

Prob = (2δ - δ2)3

STAT/CSE 416: Intro to Machine Learning8

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k k

Comparing approaches
for 2-bit tables

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k kBin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

# bins 
searched

prob. of
no NN

3

3 (2δ - δ2)3

δ2
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Comparing probabilities 

©2018 Emily Fox

(2δ - δ2)3
δ2
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If I throw down h lines…

©2018 Emily Fox

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

#awesome

#
aw

fu
l

0 1 2 3 4 …
0
1
2
3
4
… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Still assume we search bins 1 bit off from query

Prob. of being > 1 bit away 
= 1-Pr(same bin)-Pr(1 bin away)
= 1-Pr(no split lines)-Pr(1 split line)
= 1-(1-δ)h-hδ(1-δ)h-1
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If I throw down h lines…

©2018 Emily Fox

Search h+1 bins and do not find NN 
with probability 1-(1-δ)h-hδ(1-δ)h-1

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

#awesome

#
aw

fu
l

0 1 2 3 4 …
0
1
2
3
4
… Line 1

Line 2

Line 3

Bin index:
[0 0 0]

Bin index:
[0 1 0]

Bin index:
[1 1 0]

Bin index:
[1 1 1]

Still assume we search bins 1 bit off from query

Prob. of being > 1 bit away 
= 1-Pr(same bin)-Pr(1 bin away)
= 1-Pr(no split lines)-Pr(1 split line)
= 1-(1-δ)h-hδ(1-δ)h-1

STAT/CSE 416: Intro to Machine Learning12

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Probability of splitting 
neighboring points many times

©2018 Emily Fox

Probability NN is 
in different bin in 
all h+1 tables
= (1-Pr(same bin))h+1

= (1-Pr(no split line))h+1

= (1-(1-δ)h)h+1

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7
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Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k k

Comparing approaches
for h-bit tables

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k kBin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

# bins 
searched

prob. of
no NN

h+1

(1-(1-δ)h)h+1

1-(1-δ)h-hδ(1-δ)h-1

h+1

STAT/CSE 416: Intro to Machine Learning14

Comparing probabilities 

©2018 Emily Fox

(1-(1-δ)h)h+1
1-(1-δ)h-hδ(1-δ)h-1

h = 3

h = 10
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Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Fix #bits and increase depth

©2018 Emily Fox

Probability NN is 
in different bin in 
all tables falls off 
exponentially fast

Prob
= (1-Pr(same bin))m+1

= (1-Pr(no split line))m+1

= (1-(1-δ)h)m+1

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

STAT/CSE 416: Intro to Machine Learning16

Bin [0 0 0] 
= 0

[0 0 1] 
= 1

[0 1 0] 
= 2

[0 1 1] 
= 3

[1 0 0] 
= 4

[1 0 1] 
= 5

[1 1 0] 
= 6

[1 1 1] 
= 7

indices L0 L1 L2 L3 L4 L5 L6 L7

Fix #bits and increase depth

©2018 Emily Fox

Typically higher 
probability of 
finding NN than 
searching m bins 
in 1 table
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Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k k

Summary of LSH approaches

©2018 Emily Fox

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Bin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

# pts k k k kBin [0 0] = 
0

[0 1] =
1

[1 0] = 
2

[1 1] = 
3

indices L0 L1 L2 L3

Cost of binning points is lower, 
but likely need to search 

more bins per query

Cost of binning points is higher, 
but likely need to search 

fewer bins per query

STAT/CSE 416: Intro to Machine Learning

KD-trees

©2018 Emily Fox

OPTIONAL
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Structured organization of documents
- Recursively partitions points

into axis aligned boxes.

Enables more efficient 
pruning of search space

Works “well” in “low-medium” dimensions
- We’ll get back to this…

KD-trees

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning20

KD-tree construction

©2018 Emily Fox

Start with a list of 
d-dimensional points.

Pt x[1] x[2]

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …
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KD-tree construction

©2018 Emily Fox

x[1]
>.5

Split points into 2 groups 

Split dimension

Split value

YESNO
Pt x[1] x[2]

1 0.00 0.00

3 0.13 2.85

… … …

Pt x[1] x[2]

2 1.00 4.31

… … …

STAT/CSE 416: Intro to Machine Learning22

KD-tree construction

©2018 Emily Fox

x[1]
>.5

Recurse on each group 
separately

Split dimension

Split value

YESNO
Pt x[1] x[2]

1 0.00 0.00

3 0.13 2.85

… … …

Pt x[1] x[2]

2 1.00 4.31

… … …
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KD-tree construction

©2018 Emily Fox

x[1]
>.5

Recurse on each group 
separately

Split dim 1

Split value 2

x[2]
>.1

Split dim 2

Split value 2

YESNO

NO

Pt x[1] x[2]

2 1.00 4.31

… … …
YES

Pt x[1] x[2]

1 0.00 0.00

… … …

Pt x[1] x[2]

3 0.13 2.85

… … …

STAT/CSE 416: Intro to Machine Learning24

KD-tree construction

©2018 Emily Fox

Continue splitting points at each set
- Creates a binary tree structure

Each leaf node contains a list of points
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KD-tree construction

©2018 Emily Fox

Keep one additional piece of info at each node:
- The (tight) bounds of points at or below node

STAT/CSE 416: Intro to Machine Learning26

KD-tree construction choices

Use heuristics to make splitting decisions:
-Which dimension do we split along? 

-Which value do we split at?  

-When do we stop?   

©2018 Emily Fox
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Many heuristics…

©2018 Emily Fox

median heuristic center-of-range 
heuristic

STAT/CSE 416: Intro to Machine Learning

NN search with KD-trees

©2018 Emily Fox

OPTIONAL
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Nearest neighbor with KD-trees

©2018 Emily Fox

Traverse tree looking for nearest neighbor to query point

STAT/CSE 416: Intro to Machine Learning30

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
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Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point

STAT/CSE 416: Intro to Machine Learning32

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
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Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

STAT/CSE 416: Intro to Machine Learning34

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

Does nearest neighbor have to live at 
leaf node containing query point?
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Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

STAT/CSE 416: Intro to Machine Learning36

Nearest neighbor with KD-trees

©2018 Emily Fox

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

Update distance bound when new 
nearest neighbor is found



5/2/18

19

STAT/CSE 416: Intro to Machine Learning37 ©2018 Emily Fox

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to 
prune parts of tree that cannot include nearest neighbor

STAT/CSE 416: Intro to Machine Learning38

Nearest neighbor with KD-trees

©2018 Emily Fox

Use distance bound and bounding box of each node to 
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor with KD-trees

©2018 Emily Fox

Use distance bound and bounding box of each node to 
prune parts of tree that cannot include nearest neighbor

STAT/CSE 416: Intro to Machine Learning40

Complexity

For (nearly) balanced, binary trees...
• Construction
- Size:
- Depth: 
- Median + send points left right:
- Construction time: 

• 1-NN query
- Traverse down tree to starting point:
- Maximum backtrack and traverse:
- Complexity range:

Under some assumptions on distribution of points, 
we get O(logN) but exponential in d

©2018 Emily Fox
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Complexity

©2018 Emily Fox

pruned many
(closer to O(log N) )

pruned few
(closer to O(N) )

STAT/CSE 416: Intro to Machine Learning42

Complexity for N queries

• Ask for nearest neighbor to each doc

• Brute force 1-NN:

• kd-trees:

©2018 Emily Fox
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Inspections vs. N and d

©2018 Emily Fox
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exp(d) trend
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k-NN with KD-trees

©2018 Emily Fox

distance to 2nd nearest neighbor 
in 2-NN example

Exactly same algorithm, but maintain distance to 
furthest of current k nearest neighbors
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Approximate k-NN search

©2018 Emily Fox

OPTIONAL

STAT/CSE 416: Intro to Machine Learning46

Approximate k-NN with KD-trees

©2018 Emily Fox

Before: Prune when distance to bounding box > r
Now: Prune when distance to bounding box > r/α

Prunes more than allowed, but can guarantee that if we return a 
neighbor at distance r, then there is no neighbor closer than r/α

Saves lots of search 
time at little cost in 

quality of NN!

Bound loose…In practice, often closer to optimal.
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Closing remarks on KD-trees
Tons of variants of kd-trees

- On construction of trees 
(heuristics for splitting, stopping, representing branches…)

- Other representational data structures for fast NN search 
(e.g., ball trees,…)

Nearest Neighbor Search
- Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!
- Number of kd-tree searches can be exponential in dimension

• Rule of thumb… N >> 2d… Typically useless for large d.

- Distances sensitive to irrelevant features 
• Most dimensions are just noise à everything is far away
• Need technique to learn which features are important to given task

©2018 Emily Fox

STAT/CSE 416: Intro to Machine Learning48

Motivating alternative approaches to 
approximate NN search
• KD-trees are cool, but…
- Non-trivial to implement efficiently

- Problems with high-dimensional data

©2018 Emily Fox
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KD-trees in high dimensions

©2018 Emily Fox

• Unlikely to have any data points 
close to query point

• Once “nearby” point is found, 
the search radius is likely to 
intersect many hypercubes
in at least one dim

• Not many nodes can be pruned

• Can show under some conditions 
that you visit at least 2d nodes

STAT/CSE 416: Intro to Machine Learning50
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