Automated Verification of RISC-V Kernel Code

Project Report

Antoine Kaufmann

June 10, 2016

1 Introduction

The longer term goal for this project is to investigate au-
tomated verification of an exokernel[/l]]/microkernel. As-
suming hardware virtualization support on the CPU as
well as I/O devices, very few operations actually need to
be mediated by the kernel [3]]. And the parts that do need
to be executed as privileged kernel code perform simple
operations. Most of those operations will interact closely
with hardware, be it to modify CPU control registers, or
to program an IOMMU. Because of this there is only
very little code where a high-level language would pro-
vide any benefits for implementation or verification. Thus
we choose to verify the kernel at the machine code level
for this project, and for reasons of simplicity we selected
the RISC-V instruction set architecture [4] as our target.
Code paths through our kernel are generally simple con-
sisting of few conditionals and no unbounded loops. This
makes our kernel code a good candidate for automated
verification techniques, and SMT solvers in particular.

For this class project we will limit ourselves to a sim-
plified kernel as follows: All applications are already as-
sumed to be loaded into memory prior to kernel initial-
ization, and a kernel configuration describing where they
are located is passed to the kernel in memory. The kernel
only implements two system calls: yield for switching
between processes, and sbrk for allocating and freeing
memory. One important property that an operating sys-
tem needs to provide to enable reasoning about end-to-end
correctness of applications running on top of it is memory
isolation. If an application cannot depend on its code and
data remaining unchanged at run time, any verification of
it’s properties will become impossible or at least much
more challenging. For the class project we aim to prove
the following properties about the kernel:

1. Initialization: if a valid configuration is provided the
kernel will boot to user space and start executing
the first application. At this point the kernel’s in-
memory state corresponds to the configuration.

2. yield syscall: stores current state in kernel’s state
for the process, switches to next application, and re-
stores next application’s state.

3. sbrk syscall: if possible allocate additional memory
to the application else return correct error code.

4. memory isolation: after boot and every system call,
all application’s memory remains isolated.

We chose the RISC-V architecture for this project be-
cause it provides the required functionality but as a clean
slate approach also has a relatively compact specification.
Also useful for this project in particular is that it provides
simpler mechanisms for memory access control that are
suited for embedded systems. In addition to regular vir-
tual memory based on page tables, RISC-V provides sim-
plified segmentation where just a single base address and
limit are specified for the memory accessible to the appli-
cation. To verify the kernel at a machine code level, we
built a Z3 model for all required instructions, their encod-
ing, and also control registers influencing execution.

The rest of this report is structured as follows: Section 2]
presents the RISC-V CPU model. Then section [3| de-
scribes our kernel including its specification, implemen-
tation, and our verification effort and results. Finally sec-
tion] discusses some possible future work.

2 RISC-V CPU Model

In order to be able to reason about kernel code at the
machine code level, we need a model that captures how
to execute those instructions. This section presents our
CPU model in Z3, discusses how we validated it, and the
model’s current limitations.

RISC-V is a modular ISA, that consists of a base in-
struction set to which various extensions can be added,
e.g. multiplication/division, floating point, or atomic
memory operations. We specify the RV64-I instructions,
which are the 64 bit core instructions. These consist of

control flow instructions, memory operations, linear arith-
metic, and bit operations. In addition we also implement
parts of the RISC-V privileged architecture, that provides
the necessary mechanisms, for running a kernel with mul-
tiple applications, including control transfers and memory
protection. Our model currently only implements a sub-
set of the privileged architecture. In particular we only
implement the machine and user privilege levels and sim-
ple base and bounds memory protection, that can restrict
user code to a contiguous segment of physical memory.
This simpler memory protection scheme only requires two
CPU registers and does not require parsing of page tables.

2.1 SMT Model

Below we describe our SMT model that captures the full
machine state and how it is modified by instruction.

2.1.1 Symbolic Execution

For our first try we started out building a pure Z3 expres-
sion that, given the initial machine state, captures the full
process of fetching an instruction, decoding it, executing
it, represents the modified machine state. We then chained
those expressions together to execute multiple instruc-
tions, while using Z3’s simplify tactic to cut down the ex-
pressions to only reachable parts for scenarios where most
of the state was concrete. For executing simple sequences
of instructions without conditional branches from a fully
concrete state this approach worked reasonably well, be-
cause Z3 can basically just evaluate the expression. How-
ever we quickly found for slightly more complicated in-
structions sequences that this approach often leads to huge
expressions because simplify is not always able to decide
conditionals in the expressions, even when Z3 itself actu-
ally has sufficient information to choose a branch. If this
happens for the program counter, then building up the next
step of instructions is then generally not able to simplify at
all, leading to a huge expression catching all possible in-
structions, even if in fact only one instruction is possible.
This results in huge performance problems, and in prac-
tice lead to Z3 no longer being able to prove even simple
things about such concrete sequences of instructions.
Therefor we adapted our model to use a symbolic exe-
cution approach. So for all conditionals in the expression
we use Z.3 to determine which branches are reachable, and
then only generating separate expressions for the reach-
able branches remembering the path condition for each.
With this we basically build up expressions top down,
and only actually build parts of the expression that will
be needed for evaluation. This basically means that we

def split(self, cond, then_f, else_f,
xargs):
assert self.split_.cond is None
Check if we know which branch to
take
cc, sc = check_cond(cond, self.s)
s = self.s
if cc == True:
then_f(self, xargs)
elif cc == False:
else_f(self, xargs)
else:

t.ms = self. _copy()
e.ms = self._copy()

self.split_.cond = sc
self.split_then = t_ms
self.split_else = e_ms
self .. mem = None
self . _cpu = None
s.push ()

s.add(sc)

then_f(t.ms, xargs)
s.pop ()

s.push ()

s.add (Not(sc))
else_f(e.ms, =xargs)

s.pop()

Figure 1: Method in our state class for generating condi-
tional expressions. It takes a condition, the two functions
that operate on the respective branches, as well as a set of
arguments to pass to the branches.

def _condbranch(ms, instr, cond):
pc = ms.cpu.read_pc ()
def then_f(ms_t, instr, pc):

ms_t.cpu.write_pc(pc + instr.
imm_sextx ())
def else_f(ms_f, instr, pc):
ms_f.cpu. write_pc(pc + 4)
ms. split(cond, then_f, else_f,
instr , pc)

Figure 2: Function that implements handling for condi-
tional jump instructions based on our state split mecha-
nism.

are now no longer operating on a single expression repre-
senting the current state, but on a set of expressions cap-
turing possible state, and then potentially splitting indi-
vidual expressions whenever a non-decidable conditional
occurs. Figure[T|shows the code in our state class for han-
dling this splitting of the state based on which branches
are reachable Unfortunately this splitting of expressions
makes code somewhat harder to write, because separate
functions for generating the individual branches need to
be provided, and after splitting, the state can no longer
be directly modified, but we provide a do_with method
that applies a function to each child state recursively. Fig-
ure[2]shows an excerpt of our model for conditional jumps
where the program counter is modified based on whether
the branch is taken or not.

2.1.2 Machine State

When reasoning about code behavior we’re really actu-
ally reasoning about possible machine states, i.e. what
values CPU registers can contain, what the next instruc-
tion to be executed is, or values in memory. Thus our
model is describes how executing instructions transforms
the machine state. Figure 3] shows our Z3 definition of
the machine state, it consists of the memory state, and the
CPU state. Memory state is currently modeled as an ar-
ray, and the CPU state consists of the program counter,
general purpose registers, and a numbers of configuration
registers (CSRs). When executing an instruction we start
out with the initial machine state, and get the resulting
machine state.

2.1.3 Instruction Execution

Executing an instruction means fetching the instruction
from memory at the current program counter, then de-
coding it to determine which instruction it is, and finally
based on that calculating the updated machine state.

RV64-1 instructions are encoded in one of 6 for-
mats, depending on what operands they take (immediates,
source and destination registers). Some instructions are
uniquely identified based on the opcode in the lowest 7
bits, but most instructions also require looking at addi-
tional bits in the instruction word to discover what in-
struction to perform. To express decoding in a somewhat
readable manner, we specify the process as a two stage
table. The first stage maps from the opcode to either an
instruction handler or a second stage table. In the second
stage we specify a set of instruction bits to match on, and
then provide a match table that based on those bits maps
to instruction handlers.

mem_sort = ArraySort(mach_bv_sort,
byte_bv_sort)
cpustate_sort = Datatype(CPUState’)
cpustate_sort.declare(’cpu_state’,
(’pc’, mach_bv_sort),
(’regs’, ArraySort(regidx_sort
, mach_bv_sort)),
trap setup csrs
(’csr_mstatus’, mach_bv_sort),
(’csr_mtvec’, BitVecSort(xlen
- 2)),
trap handling csrs
(’csr_mscratch’, mach_bv_sort)
(’csr_mepc’,
2)),
(’csr_mcause’, mach_bv_sort),
(’csr_mbadaddr’, mach_bv_sort)
Machine protection
(’csr_mbase’, mach_bv_sort),
(’csr_mbound’, mach_bv_sort),
(’csr_mibase’, mach_bv_sort),
(’csr_mibound’, mach_bv_sort),
(’csr_mdbase’, mach_bv_sort),
(’csr_mdbound’, mach_bv_sort),
Other privilege levels
(’csr_sepc’, mach_bv_sort),
(’csr_hepc’, mach_bv_sort),
)
machstate_sort =
MachineState ’)
machstate_sort.declare(’machine_state’

BitVecSort(xlen —

Datatype (’

il

(’mem’, mem_sort),
(’cpu_state’, cpustate_sort))

Figure 3: Definition of the Z3 sorts representing the ma-
chine state.

@d_advance_pc

@d_store_rd
@d_read_rs1
def op.-addiw(ms, instr, rsl):
rsl = Extract(31, 0, rsl)
val = rsl + instr.imm_sext(32)

return SignExt(xlen — 32, val)

Figure 4: Instruction handler for the addiw instruction.

Our instruction handlers are written in an imperative
manner, modifying the machine state, which is internally
translated to building up new expressions for the machine
state. We provide a number of python decorators that al-
low many of the basic expressions to be expressed fairly
concisely. Figure 4] shows the handler for the addiw in-
struction that sign extends the provided immediate to 32
bits and adds it to the lower 32 bits of the source regis-
ter, and then sign extends the result to 64 bits and stores
it in the destination register. Here we used decorators to
indicate that this instruction just advances the program
counter, that the return value should be written to the des-
tination register, and that the content of the source register
should be passed as a parameter. Other instructions have
more complicated handlers, e.g. instructions for writ-
ing the configuration registers do a range of permission
checks and can behave differently based on what register
is written.

2.2 Validation

To validate our model we use a set of test cases that is
provided by the RISC-V project for validating RISC-V
implementations: https://github.com/riscv/
riscv-tests| These test cases are just compiled to
ELF binaries, and generally contain a few 10s or 100s of
instructions. The only modifications we made were two
smaller changes to the framework that is used for running
the tests: 1) we change it to use the mscratch config-
uration register to indicate success or failure of the test
instead of a vendor specific register, and 2) we removed
two memory fence instructions because we do not support
them.

We ran all the test cases for the instructions our model
supports. The test cases for the supported RV64-I user
space instructions all pass. And running those tests helped
us catch a number of errors when moving to our symbolic
execution based framework. The test cases also include
a number of tests for the privileged architecture, but for
most of those we currently do not support all the features
that are tested.

2.3 Limitations

Our model for the RV64-1 instructions is fairly complete.
We are currently missing the two memory fence instruc-
tions, and instructions for reading the timer, cycles, and
instructions retired counter. The latter group should be
easy to add, modelling the former correctly will require
adding an instruction or data cache.

For the privileged architecture our support is much
less complete. We support the necessary mechanisms for

traps, system calls, transfers between privilege levels, and
base-and-bounds memory protection. The major features
that are missing are modelling interrupts, support for su-
pervisor protection level (we currently only have user and
machine), page table based virtual memory, and support
for delegating traps.

None of those missing features are currently required
for our kernel. But especially support for page table based
virtual memory would be interesting to add, and include
in the verification.

3 Kernel

The following section first provides a rationale for our ker-
nel design decisions, and next we discuss our specifica-
tion. After this we provide a few comments on our imple-
mentation before moving on to our verification methodol-

ogy.

3.1 Structure

Kernel structure has a significant impact on verification
and verification effort in particular, e.g. a monolithic ker-
nel includes much more functionality and generally has a
much broader interface than a micro kernel. To be fair, a
micro kernel based system providing equivalent function-
ality would need to provide a lot of functionality as user
space services. But we would expect that verifying the
same functionality as individual services would be sig-
nificantly easier because of the modularity and because
individual services can rely on the isolation guarantees
provided by the kernel. Another reason why modularity
would help make things easier is that services in a mi-
cro kernel could potentially be written in a higher level
language. For a monolithic kernel this is often more diffi-
cult because it also needs to be able to manage low-level
hardware details, and often has many parts where over-
heads incurred by higher level languages, e.g. garbage
collection, are not acceptable. In a micro kernel individ-
ual services can easily be built using different languages
and methodologies.

The seL4 project [2]] was the first project to achieve full
formal verification of a micro kernel implementation. But
even though the micro kernel consists of relatively little
code, they still report a verification effort of more than
20 person years. And while automated verification tools
have made a lot of progress over the recent years, it seems
unlikely that they would reduce this time to something
reachable by a class project. We aim to reduce the burden
by reducing kernel functionality even further, by opting
for a kernel model that is closer to an Exokernel, which

https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests

provides no abstractions to applications at all, but only a
mere mechanism to enforce resource management deci-
sions. The goal of this design is to keep only the minimal
necessary functionality inside the kernel and push the rest
of the functionality out to user space.

Next we will discuss an example of where an Exokernel
makes verification easier compared to other approaches:
A traditional kernel would provide a system call to request
arange of memory of specified size. This requires kernel-
data structures to track free memory and kernel code to
maintain them. An exokernel on the other hand provides
a system call to request particular memory pages. For
simplification we assume no memory sharing is required.
In this case all that the kernel needs to track for each
physical page which application (if any) it is currently as-
signed to. So an allocation request just requires checking
whether that particular page is currently unused, and then
change the assignment, and then perform the necessary
CPU operation to make the page accessible. This simpli-
fied operation is easier to verify in an automated fashion
because all code paths are trivially bounded (no complex
data structures needed).

3.2 Specification

As described earlier, our kernel provides memory iso-
lation between applications using the RISC-V base and
bounds mechanism. We also want the kernel to provide
two system calls: yield for switching between applica-
tions, and sbrk for allocating and freeing memory. To
provide this functionality the kernel needs to keep track
of which applications are running, and what their current
state is. The application state includes the contents of the
CPU registers (x1-x31) and the program counter when the
application was suspended, as well as the base address and
length of the application’s memory segment. And we re-
fer to this state as valid if none of the memory segments
overlap with each other or the kernel. This is our first in-
variant: the application state is always valid. To connect
this reasoning to the concrete runtime in-memory state of
the kernel, the second invariant that is required for all rea-
soning is that the kernel code and any read-only data re-
mains unmodified.

The correctness proof of the kernel is primarily induc-
tive: initialization establishes those invariants, and each
of the steps, the two system calls and exceptions, preserve
those invariants. All of those steps basically execute in-
structions until the CPU switches to user mode, and rea-
son about the state then.

#define CONFIG_ADDR 0x800
#define CONFIG.MAX_APPS 8

struct config {
uint64_t num;
struct {
uint64 _t
uint64 _t

mem_base ;

mem_bound ;
uint64_t pc_entry;
uint64_t rsvd;

} entries [CONFIGMAX _APPS;

+s

Figure 5: Definition of run-time configuration for kernel
initialization. Up to 8 applications, each with memory
segment and entry program counter.

Initialization After kernel initialization we expect the
kernel to have read the configuration of applications to
run, to have set up its internal state accordingly, to enter
the first application, and to have established the invariants
as discussed above. The actual in-memory configuration
format is shown in fig.[5] As shown it includes the num-
ber of applications to start, and each application’s memory
segment and entry point, and the kernel expects to find
it at address 0x800 in memory. So if the configuration
is valid, i.e. there are no overlapping applications, the
kernel state after initializing accordingly should also be
valid. And, assuming that there is at least one application,
the kernel should start executing the first application in
user space. This includes setting up the base and bounds
CPU registers, switching to user space, and jumping to the
entry point program counter. Overall this leaves us with
three theorems to prove:

e [nit-1: The internal kernel state corresponds to the
configuration i.e. there are the same number of ap-
plications, their program counters and memory seg-
ments match.

e Init-2: Given a valid boot configuration (non-
overlapping), the resulting kernel state is also valid.

e [nit-3: The read-only parts of the kernel in memory
are still intact after initialization.

e [nit-4: The CPU is executing in user space, has the
first applications memory base and bounds set, and
is executing at the entry program counter.

e [nit-5: The kernel only modified its own writable
memory.

yield syscall The yield system call should switch to
the next available application or keep executing the same
application if there is no other application. If it switches
between applications, it should store the current applica-
tion’s state, i.e. it’s register contents and program counter
in the kernel state, so it can be restored. On a switch to
another application, we also want to ensure the new ap-
plication resumes executing at its last state. We also want
to ensure that regardless of the outcome, the invariants are
still preserved. Assuming the invariants hold when the
system call is triggered we need to prove the following
theorems:

e Yield-1: We store the current application’s register
state and program counter in the kernel internal ap-
plication state. (for simplicity we do this regardless
of whether we actually switch or not).

o Yield-2: If we switch to another application, we re-
store it’s register state and program counter as well
as memory segment from the kernel state. Otherwise
the registers, program counter, and memory segment
remain unmodified and the application continues ex-
ecuting.

e Yield-3: The two invariants are still valid afterwards.

e Yield-4: None of the other application’s state is mod-
ified.

e Yield-5: The kernel only modified its own writable
memory.

sbrk syscall The sbrk system call should extend or
shrink the application’s memory segment by the specified
amount if this does not lead to overlapping with other ap-
plications. So if the segment can be modified both the
kernel internal state for the application, and the CPU state
should reflect the new segment limit. Otherwise the cor-
rect error code should be returned. So again assuming the
two invariants from above hold before the system call we
have to prove the following theorems:

e Sbrk-1: If the modification of the segment limit does
not lead to overlap or a negative segment size, we
extend the application’s limit. Thus the kernel inter-
nal application state is updated accordingly, and the
CPU bound register is also updated. Otherwise the
right error code is returned.

e Sbrk-2: The register state (besides the error code)
and PC are unmodified.

e Sbrk-3: The two invariants are still valid afterwards.

#define PCB_VALID 0Ox1
struct pcb {
uint64_t
uint64 _t
uint64 _t
uint64_t
uint64_t
uint64 _t

Sp;

regs [30];

pc;

mem_base ;

mem_bound ;

flags;

}s

struct pcb pcbs [CONFIG.MAX_APPS];
uint64_t cur_proc;

Figure 6: Run-time kernel state: pcbs is an array
of the process control blocks for each application, and
cur_proc contains the process id of the currently run-
ning process (index into the array).

e Sbrk-4: None of the other application’s state is mod-
ified.

e Sbrk-5: The kernel only modified its own writable
memory.

Exceptions If an application causes an exception it is
terminated, and another application is resumed, or if there
is no other application the system is stopped. The theo-
rems here are analogous to the yield system call, with the
only difference being that the current application will be
marked as inactive.

3.3 Implementation

The kernel was implemented in a mix of around 200 lines
of C code, and around 150 lines of assembly. Most of
the assembly parts are concerned with context switching,
either saving registers and other application state to the
internal kernel state, or restoring application state from
internal kernel state. Figure [6] shows the definition of the
internal kernel state. It consists of an array of process
control blocks, one for each application, and a variable
for holding the index of the currently executing applica-
tion. The process control block stores the register state,
program counter, memory segment, and a flag that indi-
cates whether an application is valid or not. For simpli-
fying context switching we also store a pointer to the cur-
rent process control block in the CPU mscrat ch register
(only accessible to the kernel).

3.4 Verification

Because of time constraints we have only formally veri-
fied theorems Init-1 through Init-4 so far. Below we de-
scribe the techniques we used for these. But we do believe
the our current framework is sufficient for verifying most
of the theorems for the system calls and exceptions. Prov-
ing Init-5/Yield-5/Sbrk-5 will possibly require some ex-
tensions to our model to be verifiable in reasonable time.

For reasoning about our kernel, we load the kernel ELF
file into our model of the machine state. Depending on
whether we are reasoning about induction steps (system
calls or exceptions) or initialization we either skip the
writable segments or load them. At initialization the ker-
nel starts out with all it’s memory as it was loaded by
the boot loader, corresponding to the ELF file. But when
processing a system call, previously executed kernel code
could have modified the writable parts, e.g. the kernel
stack, so we leave those parts abstract. In order to be able
to reason about code that actually accesses and modifies
the writable state in system call or exception handlers e.g.
to access the process control blocks, we need precondi-
tions that constrain the initial state.

Expression the theorems mentioned above that reason
about the internal kernel state requires parsing the actual
machine state, i.e. the bytes from memory. Figure
shows our python code for parsing the process control
blocks. Based on those parsed values we can then write
propositions to be verified by Z3.

For initialization we start with an abstract machine
state, load the ELF file, and set parts of the CPU state
as it is to be expected at boot, i.e. running in machine
mode and executing at the reset program counter. We also
write an abstract kernel configuration to memory. Then
we have our model run up to 1024 instructions or until
the CPU switches to user space. If it conclusively reaches
user space we use the resulting state to check our Init the-
orems on. The init theorems check that the CPU state and
parsed kernel state, as described above match up with the
abstract kernel configuration written to memory. Verify-
ing those theorems currently takes around 1 minute for a
kernel supporting up to 8 applications.

4 Future Work

Below a list of options for continuing this project and sug-
gestions for other future work:

e The most obvious next step is to complete the veri-
fication for the kernel as described. While there are
possibly some issues with verification performance
that might need to be addressed, we anticipate that

def load_state (ms):
st = {}
st[’cur_proc’] = ms.mem.
read_double (mach_bv_val(
_cur_proc_addr))

apps = []

addr = _pcbs_addr

for i in range(0, MAX_APPS):
app = {}
app[’regs’] = []
for ro in _PCB_OFF_REGS:

app['regs’].append (ms.mem.
read_double (
mach_bv_val (addr + ro)
)
app[’pc’] = ms.mem.read_double
(mach_bv_val (addr +
_PCB_OFF_PC))
app[’base’] = ms.mem.
read_double (mach_bv_val(
addr + _PCB_OFF_BASE))
app[bound’] = ms.mem.
read_double (mach_bv_val(
addr + _PCB_OFF_BOUND))
app[’flags’] = ms.mem.
read_double (mach_bv_val(
addr + _PCB_OFF_FLAGS))

apps.append (app)

addr += _PCB_SIZE
st[apps’] = apps
return st

Figure 7: Parsing in-memory kernel state for use in theo-
rems

our framework should be sufficient for proving the
outlined properties.

Extending the kernel to use additional hardware fea-
tures, such as virtual memory instead of base-and-
bounds memory protection, adapting the kernel spec-
ification and verifying the resulting kernel is the next
obvious target and would be required for the kernel
to be practically useful.

Our model currently does not model interrupts, but
the mechanisms for traps are implemented so only
interrupt sources are missing. We expect that it is
feasible to just turn off interrupts in the kernel, so this
would not have a significant impact on verification.

Another interesting option that could be achieved
with the current framework is proving more abstract
properties based on the specification. E.g. Cur-
rently we only verify that the kernel sets the base and
bounds registers correctly, but it would be desirable
to show that this actually implies memory isolation.

Extending this approach to other somewhat more
complicated architectures is another interesting di-
rection, and would also likely be required for practi-
cal applications. ARM would be an interesting tar-
get, X86 would likely be much harder.

Reasoning about the kernel state requires interpret-
ing the memory contents and connecting them to the
abstract state that theorems refer to. Currently we are
manually parsing the memory contents, which is less
than satisfying. It would be great to have some tool
support to reason about the state at a higher level pos-
sibly based on the kernel source code and generating
the code for parsing memory automatically.

Finally, the set of test cases for RISC-V is some-
what limited. So to get additional confidence that
the model is correct, it would be interesting to auto-
matically generate test cases by generating instruc-
tion sequences and running them through both the
model and a RISC-V simulator and then comparing
the results. This would improve confidence in the
correctness of the model.

References

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.

Exokernel: An operating system architecture for
application-level resource management. In Proceed-
ings of the Fifteenth ACM Symposium on Operating

(2]

(3]

(4]

Systems Principles, SOSP *95, pages 251-266, New
York, NY, USA, 1995. ACM.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sel4: Formal verification of an os ker-
nel. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles, SOSP 09,
pages 207-220, New York, NY, USA, 2009. ACM.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The operating system is the control plane. ACM
Trans. Comput. Syst., 33(4):11:1-11:30, Nov. 2015.

RISC-V Foundation. RISC-V: The free and open
RISC instruction set architecture. http://riscv.
orqg/.

http://riscv.org/
http://riscv.org/

	Introduction
	RISC-V CPU Model
	SMT Model
	Symbolic Execution
	Machine State
	Instruction Execution

	Validation
	Limitations

	Kernel
	Structure
	Specification
	Implementation
	Verification

	Future Work

