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Computer vision began just over fifty years ago with the work of Larry Roberts at MIT in the

early 1960s, published in his dissertation and in a landmark article in 1965. This work covered, in

some sense, all aspects of computer recognition of three-dimensional objects from image capture

to edge finding (the first edge operator), line fitting, and model-based object recognition. By the

time I entered the field, reading the literature in about 1972, quite a lot of work had been done. I

was greatly impressed by the work of Adolfo Guzman, also from MIT, who developed a follow-on

system that input line drawings extracted from images of polyhedral scenes with any number of

objects in all kinds of spatial relationships and could list the separate objects in the scene. I also

read the work in syntactic pattern recognition that influenced my early work in computer vision,

for example, work by Rangaswamy Narasimhan in 1966 and Max Clowes in 1969 on syntactic

approaches to recognizing patterns. My own dissertation was on what is called structural pattern

recognition, putting me in the same class as King Sun Fu and his students at Purdue who worked on

grammar- or graph-based approaches to recognizing objects. Much of this work still concentrated

on line drawings. In fact, it has been said that the M.I.T. focus on line drawings actually kept back

the field of computer vision from realistic image analysis tasks. Many low-level operators had

been developed by this time, including multiple edge operators, the most commonly used being

the Sobel-Feldman, and the well-known co-occurrence texture operator of Dinstein and Haralick,

which is still heavily used today.

Other groups were developing, of course. Thomas Binford started a computer vision group at

Stanford in 1970 and supervised many Ph.Ds there, some of whom did basic and important work

in the field. Binford is best known for inventing the generalized cylinder representation for 3D

objects, a model-based approach that did not rely on just line segments and led to the well-known

work of Ram Nevatia and others who followed him on how to describe and recognize 3D objects

in terms of this representation. Azriel Rosenfeld, sometimes called the Father of Computer Vision,

started a computer vision group at University of Maryland in about 1963, wrote the first computer

vision text in 1969, and initiated the first journal in 1972. He initially called the area picture

processing and wrote numerous articles with his students. He was willing to take on any aspect

of this area from low-level image processing to high-level recognition and constraint analysis. I

visited the University of Maryland for a week in about 1977 and worked with him on the latter.

Another early and active group was that of Edward Riseman and Alan Hanson at the University of

Massachusetts (about 1969). They called their system VISIONS, and its job was to interpret color

images of complex outdoor scenes that contained houses, trees, bushes, grass, and so on. They

designed a hierarchical representation that went from schemas and objects at the top levels down

to regions, segments, and vertices at the bottom. The system was to be model-based and was to take

into account all sorts of physical phenomena, such as occlusion, perspective, lighting and shadows.

I was especially impressed with this full AI approach to the problem. While they never produced

a single working system, they did produce many Ph.D. students with excellent dissertations on all
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aspects that brought out the kinds of work in segmentation and analysis that needed to be done to

produce a full system. Their 1978 edited volume “Computer Vision Systems” included chapters

by all of the early workers in the field. Some of the ones that stand out now as most important over

time are Barrow and Tenenbaum’s paper on recovering intrinsic scene characteristics from images,

Davis and Rosenfeld’s work on relaxation, and Marr’s work on representing visual information

including his famous primal sketch.

In the 1980s, we concentrated on solving useful problems related to real domains such as the

military, space science, and industry. Robot vision became an important thrust, especially at such

institutions as Carnegie Mellon, Purdue, and Stanford Research Institute (SRI International). The

goal became to recognize parts for robots to pick up, manipulate and inspect. The concept of

CAD-based vision was developed to describe model-based vision that took its input from real CAD

models of manufactured objects, instead of expecting the vision researchers to model the objects

they wanted to recognize. The difficulty here was in converting real CAD models to computer

models with features that would actually show up on an image. The actual CAD models we

obtained from Boeing for airplane parts had points and splines to represent the curves around each

part. Furthermore, they came from a proprietary CAD system and had to be converted before we

could even look at them. So we got very few of these real CAD models and ended up looking for

parts on the floors of the Mechanical and Civil Engineering buildings across the street and creating

our own models.

The CAD-model-based-vision work led to how to best represent 3D objects for rapid recognition

by computers. The concept of an aspect graph was defined; it was a graph that would show every

possible view of an object in terms of the visible features, which were usually line segments or

surfaces. Several well known people, such as Kevin Bowyer and Jitendra Malik, worked on this

problem. While this led to a number of theoretical papers, the graphs were too big to use in

practice, and not all features showed up in the images. We called our version of aspect graphs

view classes and defined them to be the major views of the object; the features that showed up in

a single view class were similar but not identical. This led to our relational distance measure that

could determine how similar were two views and allowed clustering of the views of an object into

its major classes. When an image was analyzed, a voting procedure developed by Mauro Costa

could be applied to find the correct view class of the correct object to recognize and localize it.

Early work was extended to probablistic versions and parallel versions; locations of light sources

were also taken into account. Other well-known work in CAD-model based vision was done at

CMU by Katsushi Ikeuchi and at Purdue by Avi Kak. This work took vision into robotics and led

into 3D vision from range data.

Parallel algorithms for computer vision had been active for some time from Steve Tanimoto’s

pyramids to the massively parallel but low-level MasPar Computer (company founded in 1987)

and Danny Hillis’s Connection Machines (company founded in 1983) which could be programmed

in Lisp. We developed systems for the latter two and postulated algorithms for such systems in

general and for a dataflow machine that our lab actually built. But all of these went away, because

every year Intel put out faster and faster chips, and the big parallel machines were too expensive
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Figure 1: Images showing results from the RIO system in which the outlines of hypotheses for 3D

object models are projected onto the 2D images. The projection in the upper left is an incorrect

hypothesis that will later be ruled out in the verification step.

when the small new ones could do just as well.

Also very popular in the 1980s was the area of video analysis or motion. Hans-Hellmut Nagel (with

Ramesh Jain) actually led the way in 1977 with his work on analyzing a live video stream from a

TV camera that pointed down from his third-floor office to the street below in Hamburg. The goal

of the work was to separate non-stationary from stationary scene components. A seminal paper by

John Roach and Jake Aggarwal in 1980 tackled the problem of determining the three-dimensional

model and movement of an object from a sequence of two-dimensional images by solving a system

of nonlinear equations. Video analysis has gone a long way since these humble beginnings. The

main work today is on recognizing objects, structure (3D) from motion, and tracking objects for

surveillance. Depth cameras are now available as inexpensive units, such as the Microsoft Kinect

system.
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Another aspect of computer vision that began its rise in the 1990s and is still important today is

content-based image retrieval. The first well-known system was IBM’s QBIC: Query by Image and

Video Content. It was a full research system, but usable through a web demo, that could retrieve

images by color, texture, and shape through a graphical query language. The color histograms em-

ployed by QBIC are still the most common means of image retrieval today and probably the most

useful for just appearance similarity. Content-based retrieval morphed into multimedia retrieval in

which multiple different modalities could be retrieved. My former student Andy Berman designed

a general purpose indexing methodology for such systems that used key images instead of key

words as the index objects and could handle multiple distance measures. One of our systems could

retrieve such disparate objects as eye images, brain images, and 3D skulls.

Figure 2: Objects retrieved by our multimedia retrieval system.

The use of 3D data, original referred to as range data, became popular in the 1990s as the physical

sensors and 3D reconstruction algorithms improved. Patrick Flynn and Anil K. Jain at Michigan

State were pioneers in this field and developed databases of range images for others to try. Some

of the beginning problems were in just segmenting such images into the objects and their different

surfaces for later use in recognition. Work on both 3D reconstruction and 3D recognition went on

in parallel; my own students did both. 3D reconstruction work from space carving was pioneered

by my colleagues Steve Seitz and Brian Curless (before they joined me at UW), while a nice piece

of work was done by my own former student Kari Pulli who went on to a postdoc at Stanford and

went with Brian and his adviser Marc Levoy to digitize the entire Michelangelo statue of David

in Florence, Italy. Meanwhile, we started working on recognizing objects from their 3D shape.

There was prior work in this area by Johnson and Hebert at CMU; they developed a representation

called a spin image that could describe the surface structure about each point on a range image

(or full 3D model) of an object. Matching such descriptors could be used for model-based object

recognition or for finding matching points of the same object in multiple images. We started with

this descriptor at a low-level, and my former student Salvador Ruiz-Correa developed a machine-

learning-based system for learning the shape structure of regions on 3D objects that allowed them

to be distinguished from one another. Regions with similar spin images became primitives and

were then described by their spatial relationships for classification.

Small toy objects such as snowmen, bunnies, and dogs were used in our experiments, which
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Figure 3: 3D Reconstruction of heads from uncalibrated internet photos.

showed that just the cheek areas could be used to differentiate them. Later, the technique was

used in a medical application to recognize an abnormal condition of the skull called craniosyn-

ostosis. That was the start of period of work on abnormal craniofacial anatomy for my group in

which we worked on fully 3D images of children with craniosynostosis, plagiocephaly, 22q11.2

deletion syndrome, and cleft lip and palate. This work involved both the development of new

features and the use of machine learning for both classification and quantification of the severity

of these disorders. One descriptor developed by my former student Indriyati Atmosukarto that

worked particularly well for both plagiocephaly, which is concerned with flat parts on the back of

a child’s head, and 22q11.2 deletion syndrome, which causes multiple different abnormalities such

as bulbous nasal tip and midface hypoplasia, was a 2D histogram of the azimuth and elevation

angles of the 3D mesh of the head. For cleft lip and palate, the surgeons with whom we worked

were mostly interested in symmetry measures, espcially in the areas of the nose and mouth. Jia Wu

developed a whole suite of such measures, and we are still developing more. Another interesting

approach was to use the error of reconstruction of the 3D face from principal components of a

database of normal heads as a severity measure, which was pioneered by graduating student Shu

Liang.

The 3D reconstruction work has continued to this day at the University of Washington. Working

with Steve Seitz, Brian Curless, and Richard Szeliski (at Microsoft Research), Noah Snavely’s

2008 dissertation on Scene Reconstruction and Visualization from Internet Photo Collections led

to the Microsoft Photosynth product and to multiple other exciting papers and theses including

“Reconstructing Rome”, which was work done by Sameer Agarwal, then a postdoc at UW and

now at Google. The addition of Ira Kemelmacher-Shlizerman to our team led to reconstructions

of human faces and heads. Ira is well known for constructing 3D models from large collections

of internet photos “in the wild” and has produced such papers as “What Makes Tom Hanks Look

Like Tom Hanks” with her student Supasorn Suwajanakorn and Steve Seitz, “Head Reconstruction

from Internet Photos” with our joint student Shu Liang and me, and “Transfiguring Portraits”, in

which she explores modifying 2D images of people to give them different hair styles, clothing, and

very different appearances, while keeping the basic facial details of the person. Her most recent
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work with Suwajanakorn and Seitz was on learning lips sync from audio and could synthesize high

quality video of a person (such as President Obama) speaking words that he never actually said.

This produced some hubub from the press, since it could be used to create “fake news.”

Object recognition has always been important in computer vision, but it died out for a while in

the general sense in the 1980s and then returned in the late 1990s in much more powerful systems

that used powerful machine learning techniques and large databases of training images, as well as

modern image features. David Lowe’s object recognition from his now famous SIFT features was

one of the first of this kind of work. These features made it possible to recognize object classes

from multiple different views. Rob Ferus’s classic work then put together a machine learning

framework for modeling object classes based on another type of new descriptor, the Kadir saliency

operator. The exciting part of this work was that the system could learn what features best repre-

sented each object class; no more hand-constructed models. In our own group, my former student

Yi Li developed his own new features called abstract regions, proposing the idea that any kind of

region segmentation (color, texture, structure, or whatever) could be used together to learn to rec-

ognize classes of objects. In his final paper on the subject, he developed a generative/discriminative

learning algorithm that first found the regions for each abstract type and extracted fixed length de-

scriptors from each training image summarizing them and then trained a classifier to learn each

particular class depending on these training vectors, concatenated for multiple types of abstract

regions.

Figure 4: Image retrieval using generative/discriminative object recognition.
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Object recognition has really taken off in the later 2000s. Such large benchmark datasets as the

PASCAL VOC dataset and ImageNet allowed researchers to train and compare their algorithms on

a consistent set of data with the same objects. Pedro Felzenszalb developed the deformable parts

model, which represented objects via a root node and parts nodes that are detected by the HOG

(histogram of gradients) feature detector. This model won the PASCAL VOC challenge 2007,

achieving a mean Average Precision (mAP) score of 17%. It was then improved in various ways

for several years, continuing to win and to improve to 23% in 2008, 28% in 2009, 37% in 2010,

and 41% in both 2011 and 2012. Meanwhile deep neural nets were starting to take over. First

used in practice by Yann LeCun in 1998 for a document recognition application and popularized

by Geoff Hinton, convolutional neural networks (CNNs) were applied to the ImageNet object

classification challenge (ILSVRC) in 2012 by Alex Krizhevsky. Their model, AlexNet, won the

ILSVRC-2012 challenge, achieved a top-5 accuracy of 83%. It was then improved by building

very deep convolutional neural networksd to 93.33% in 2014 (GoogLeNet) and 96.43% in 2015

(ResNet). Deep neural networks were applied to the the PASCAL VOC challenge in 2013 by

Ross Girshick in a form called R-CNNs (region-based convolutional networks) in which he first

used region proposals to locate regions potentially containing objects and then trained a CNN to

recognize the objects in those regions. He won the PASCAL VOC challenge in 2013 with a mAP

score of 53% and in 2014 with 62%. CNNs have continued to outperform other methods. My

colleague Ali Farhadi and his student Joseph Redmon have recently developed YOLO, a neural

network approach to object detection that is small and fast. Their newest product YOLO9000 is a

real-time system that achieved a mAP of 76.8% on PASCAL VOC 2007. My own student Sachin

Mehta is working on object detection in real world images for use in navigation for the blind

and disabled. In this case, there is not necessarily a big benchmark database that has all objects

compiled in advance, and it is important to know what the object is and approximately where it is

with respect to the human navigator.

Our own current recognition work being done by students Deepali Aneja and Bindita Chaudhuri is

on human facial expession recognition and conversion to stylized cartoon characters using convo-

lutional neural networks. Our neural nets were initially trained on large databases of both human

facial expressions and a limited number of character facial expressions. We have now moved into

learning how to generate the 3D parameters of the characters and to be able to generalize from a

single humanlike character to multiple different stylized characters. On the medical side, we are

working on analysis of breast and melanoma biopsy slide images. In the breast domain, we have

completed a five year study that examines both the whole slide image data and the tracking data

from three expert and more than 200 community pathologists in order to better understand what

they do during their diagnostic process. In this work, we have studied the characteristic patterns

of the pathologists, discovering only so far that they tend to make more errors when zooming in

more, and have developed automated systems for detecting regions of interest and for diagnosing

the slide. Ezgi Mercan’s Ph.D. dissertation has produced several high-quality papers on this topic.

Her work on using the structure around a duct in diagnosis is particularly novel. Meanwhile, we

have moved to another grant on melanoma biopsy diagnosis and have found that the melanoma

whole slide images are even more challenging than the breast biopsies. We are currently work-
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Figure 5: Use of deep learning to transfer facial expressions from human input to cartoon charac-

ters.

ing on detection of melanocytes and mitotic figures using CNNs and then will try to develop a

structural pattern recognition approach.

Computer vision has gone from an experimental research area to a field that is in demand from

multiple industrial concerts. While medical and part inspection applications will always be around,

there are now whole new working systems developed and working in such areas as face recognition,

face and head reconstruction, self-driving cars, robot navigation, and virtual and augmented reality.

Students with skills in computer vision and machine learning are being snapped up by companies

even before they are close to graduation. The present is bright, and the future is even brighter.

8


