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Abstract— Single-suture craniosynostosis is a condition of the
sutures of the infant’s skull that causes major craniofacial
deformities and is associated with an increased risk of cognitive
deficits and learning/language disabilities. In this paper we
adapt to classification of synostostic head shapes a Bayesian
methodology that overcomes the limitations of our previously
published shape representation and classification techniques.
We evaluate our approach in a series of large-scale experiments
and show performance superior to those of standard approaches
such as Fourier descriptors, cranial spectrum, and Euclidian-
distance-based analyses.

I. INTRODUCTION

Craniosynostosis is the premature fusion of one or more
calvarial sutures that normally separate the bony plates of the
skull [4]. In normal developing infants, open sutures allow
the skull to expand as the brain grows, producing normal
head shape. If one or more sutures are prematurely fused,
there is restricted growth perpendicular to the fused suture(s)
and compensatory growth in the skull’s open sutures, produc-
ing abnormal head shape (Figure 1).

Single-suture craniosynostosis (SSC) is the most common
form of synostosis, with the prevalence of approximately 1 in
2,500 live births [23]. Among the isolated synostoses, fusions
of the sagittal, coronal, and metopic sutures are most com-
mon. Sagittal synostosis is manifested at birth as a long, nar-
row head shape (scaphocephaly) with bifrontal and occipital
bossing. Unilateral coronal synostosis is characterized by an
asymmetrical skewed head (plagiocephaly) with retrusion of
the forehead and brow ipsilateral to the fused suture and with
compensatory contralateral frontal prominence on the side
opposite of the fused suture. Metopic synostosis results in a
triangular head shape called trigonocephaly, which features
a midline forehead ridge, frontotemporal narrowing, and an
increased biparietal diameter [13]. Imaging evaluation such
as computed tomography (CT) scans are typically used to
confirm the fused suture and to describe its effect on cranial
morphology. In clinical practice, this evaluation is largely
descriptive and qualitative, based on physical examination
and radiography.
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Fig. 1. Volumetric reformations (top view) of the skull of patient affected
with isolated synostosis of the a) sagittal suture, b) metopic suture and c)
unilateral suture. The suture that fused prematurely is shown as a dotted
line.

Single-suture craniosynostosis and its associated neurobe-
havioral features (such as a three- to five-folod increase in
risk for cognitive deficits or learning/language disabilities
[24]) represent an important area of research and clinical
intervention for craniofacial providers and pediatric psychol-
ogists. Single suture synostoses are relatively common birth
defects that present frequently in hospital-based craniofacial
programs and neurodevelopmental centers. Unfortunately,
the advancement of SSC research has been hindered due to
the lack of quantitative methods to describe distinctive skull
shape features and to reveal possible associations between
skull deformity and other biological and psychological fea-
tures.

The ability to classify craniosynostosis head shapes is
a step in the development of techniques to characterize
cranial anatomy [14]. A number of studies have presented
approaches to classify SSC head shapes. Richtsmeier and
collaborators [14] combined Euclidian distance matrix anal-
ysis (EDMA) and likelihood-based classification methods
that lead to relatively large error rates, in the range of
18− 32%. More recently, our own severity indices [19][21],
cranial spectrum [20] and symbolic shape descriptors (SSDs)
[15] have also been developed to quantify skull shapes with
significantly improved error rates in the range of 6 − 10%.
A main requirement of such approaches is the development
of low-dimensional shape descriptors that enable accurate
classification and good generalization ability.

In this paper, we adapt to representation and classification
of synostotic head shapes recent work by Blei [2], which was
originally designed to represent and learn document models
in the Bayesian framework. We show that our proposed
methodology provides an effective technique to classify
synostotic head shapes that overcomes the shortcomings of
our PLSA-based shape descriptors [15]. We also show that
our approach produces SSDs of low-dimension that are able
to represent and classify synostotic and normal control head
shapes with low error rates.
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Fig. 2. In this work, all shape descriptors are computed from skull outlines
that are derived from three CT image planes. Their location is defined by
internal brain landmarks. The planes are parallel to the skull base plane,
which is defined by using the frontal nasal suture (NS) anteriorly and
opisthion (O) posteriorly. The A-plane is at the top of the lateral ventricle,
the F-plane is at the Foramina of Munro, and the M-plane is at the level
of the maximal dimension of the fourth ventricle. Ventricles are shown as
colorized regions.

The paper is organized as follows. Section II.A describes
our methods for acquiring imaging data. Section II.B and C
summarize numeric shape descriptors that have been applied
to classify synostotic head shapes, and techniques employed
to reduce their dimensionality. Section II.D develops our ap-
proach to symbolic shape descriptors, which we derived from
a hierarchical Bayesian model reported in [9]. This section
also summarizes our methods for classifying synostotic skull
shapes. Section III reports the results of our study. Section IV
presents a discussion of our findings and section V concludes
our paper.

II. METHODS

The task we approach in this work can be sumarized as
follows. We are given a random sample of skull shapes
labeled as sagittal, metopic, unicoronal, or normal control.
Using skull shape information from CT imaging, we wish to
construct a set of descriptors (numeric or symbolic) and a
classification function, in order to predict the label of a new
head shape.
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Fig. 3. An outline shape is computed from a CT image using standard
segmentation techniques. a) CT image of a patient affected with metopic
synostosis. The head length measured at the M-plane is denoted by h. b)
Outline shape oriented in CCW direction. c) Twenty coefficients of the
Fourier descriptor computed from the outline shape in b).

A. Source of CT images

All shape descriptors used in this study are computed
from skull outline shapes extracted from CT images. The
locations of the image planes are determined by internal
brain landmarks (Fig. 2). The planes are parallel to the skull
base plane, which is defined by using the frontal nasal suture
anteriorly and opisthion posteriorly. The A-plane is at the
top of the lateral ventricle, the F-plane is at the Foramina
of Munro, and the M-plane is at the level of the maximal

dimension of the fourth ventricle. Outline shapes from the
A, F and M-image planes are computed using standard
image segmentation techniques and spline interpolation as
shown in Fig 3. Each outline is represented as a contour
with N points having vertex coordinates {x(n), y(n)}, n =
0, 1, · · · , N − 1}. In this study, outline shapes are oriented
in the CCW direction.

B. Standard numeric shape descriptors

1) Fourier descriptors [18]: Given an outine with N
points, we could form a complex sequence z(n) = x(n) +
jy(n). Traversing the outline, it is evident that z(n) is a
periodic function with period of N samples. The Fourier
series of z(n) can be derived as one period of its discrete
Fourier transform Z(k). The Fourier descriptor of z(n) is a
N -dimensional vector derived from |Z(k)| by setting Z(0) to
0, in order to make the descriptors independent of position,
and dividing the remaining coefficients by |Z(1)| in order to
normalize for size. After these steps, the FD is independent
of position, size, and starting point of the contour. We
compute Fourier descriptors for the outlines of the A, F and
M-image planes, and concatenate the L = 3 resulting vectors
to form a single shape descriptor of size O(LN).
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Fig. 4. Outline skull shapes computed at the A, F and M image planes of
a patient affected with metopic synostosis. The corresponding cranial image
descriptor (CI) is shown as a false color image.

2) Chord-length distributions: can be used to characterize
2-D closed outlines [18]. A chord-length measure lij is
defined as the length of the line segment that links a pair
of outline points i and j, normalized by a characteristic
length such as the head length (h in Fig. 3). The complete
set of chords for a given outline, consists of all possible
chords drawn from every vertex to every other vertex (Fig.
4). The complete set of chords of an oriented outline can
be represented as a distance matrix that we call cranial
image (CI) in [19]. The vertices of an oriented outline can
be numbered consecutively. Consequently, the i-th row of
the CI stores the chord-lengths from the i-th vertex to every
other vertex also in consecutive order. The i-th row of the
CI is called the i-th chord length distribution (CLD) of the
outline shape.

In order to avoid ambiguity in the numbering of the ver-
tices, the first vertex is defined by the location of the metopic
suture on the outline. Note that a CI is a coordinate-free,
albeit redundant representation that has N(N − 1)/2 unique
length parameters. The definition of CI can be extended to
incorporate an arbitrary number L of outline shapes per skull.
This is accomplished by computing inter- and intra-chord
lengths for each of the L outlines. Therefore the size of a
cranial image descriptor is O(L2N2).



C. Dimensionality reduction techniques

Principal component analysis (PCA) and random projec-
tion (RP) are standard techniques that are often applied to
numeric shape descriptors to reduce their dimensionality.
Although PCA analysis is widely used in a variety of
applications, random projections have recently emerged as
a powerful method for dimensionality reduction that offers
many benefits over PCA for data sets that do not follow a
multivariate Gaussian distribution [5]. In random projection,
the original high-dimensional data is projected onto a lower-
dimensional subspace using a random matrix whose columns
have unit lengths. More specifically, a random projection
from n dimensions to d dimensions is represented by a d×n
matrix that can be generated using the following algorithm:
a) set each entry of the matrix to an i.i.d. N(0, 1) value.
b) Make the d rows of the matrix orthogonal by using the
Gram-Schmidt algorithm, and then normalize them to unit
length [16]. In practice, compact descriptors tend to improve
the odds of statistical significance (generalization ability) in
a classification task. In this work we used PCA and RP to
reduce the dimensionality of the numeric shape descriptors
presented in previous sections.
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Fig. 5. Labels for the chord-length distributions of the CI shown on the left
are computed by k-means clustering of all the chord-length distributions in
the training set. The symbolic outline shape of a metopic skull is shown
in the middle. The code-word generation process for the symbolic outline
shown on the right side, consists of forming substrings of size Ws from
adjacent vertices. In this toy example, L = 1 and Ws = 3.

D. Our approach

We begin with the algorithm to compute our symbolic
shape descriptors (SSDs). To this end, we adapt to shape
representation a variant of the generative model called latent
Dirichlet allocation (LDA) [9] that we describe in section
II-D.2.

The key points of our proposed algorithm are: a) the
computation of a symbolic outline representation shape by k-
means clustering of the chord-length distributions from a set
of outline shapes; and b) the encoding of global geometric
properties that differentiate our skull shape classes (sagittal,
metopic, unicoronal and normal control) by LDA modeling
of local shape features (code words), which are derived from
the symbolic outline representation.

1) Computation of shape descriptors: The algorithm
to construct SSDs is as follows. The input is a training
set of skull shapes {S1, · · · , SM} and a testing skull shape
SM+1. We let S denote the set {S1, · · · , SD}, where D =
M + 1. The output is a set of SSD {Θ1, · · · ,ΘD}, where

Θi = (Θi1, · · · ,ΘiK), and K is a parameter to be defined
below. It is assumed that each shape in S is represented by
L oriented outlines, and each outline is discretized into N
evenly spaced vertices. For the sake of simplicity and without
loss of generality, we assume that L = 1.

1) Compute the cranial image representation for the out-
line shapes in the training set.

2) Assign symbolic labels to all the vertices of the out-
lines in S. Labels are computed by applying k-means
clustering to the CLDs associated with the CIs calcu-
lated in the previous step. The number of clusters k (i.e.
the number of symbolic labels) is currently specified by
the user at this time. The vertices are tagged according
to the label assigned to their corresponding CLDs. An
outline shape with labeled vertices is called a symbolic
outline shape (Fig. 5).

3) Use the k-means cluster centers obtained in the previ-
ous step and a nearest neighbor rule to assign symbolic
labels to the vertices of the testing outline SM+1.

4) Compute code-words from the symbolic outline repre-
sentation of the skulll-shapes in S. More specifically,
the labels associated with the vertices can be used
to construct code-words. The word size is fixed at
some integer 1 ≤ Ws ≤ N . For instance, when
Ws = 3, each word contains three labels. A toy exam-
ple illustrates the code-word generation process. Let
XCDEDBY A be the string representing a symbolic
outline in Fig. 5, where N = 8. We use capital letters
as our symbolic labels and set Ws = 3. The code-
words are {AXC, XCD, CDE, DED, EDB, DBY,
BY A, Y AX}.

5) Form a code-book by collecting all different code-
words associated with all the skull shapes in S. The
number of code-words in the code-book is denoted by
W .

6) Compute D × W co-occurrence matrix of counts
nji, which stores the number of times the i-th code-
word occurred in the symbolic outline representation
associated with Sj ∈ S.

7) Fore each Sj ∈ S compute the corresponding SSD

Θj = (Θj1, · · · ,ΘjK)

by applying the LDA model to the co-ocurrence matrix
calculated in the previous step.

2) LDA model specification and inference: In the
context of our work, LDA models the codewords of each
symbolic outline shape as a mixture over what we call geo-
metric topics. A geometric topic is defined as a multinomial
distribution over all the code-words in a code-book.

It is easier to understand the model by going through the
generative process for creating the code-words of an outline
of a particular shape class. We assume that there are K latent
geometric topics, each being a multinomial distribution over
a vocabulary of size W . For shape Sj ∈ S , we first draw
a mixing proportion θj = {θjk} over K geometric topics
from a symmetric Dirichlet distribution with concentration
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Fig. 6. Graphical representation of the LDA generative model of code-
words associated with symbolic outline shapes.

parameter α. For the i-th code-word of Sj , a topic zij is
drawn with topic k chosen with probability θjk. Then, the
code-word xij is drawn from the zij th topic, with xij taking
value w with probability φkw. Finally, a symmetric Dirichlet
prior with parameter β is placed on the topic parameters
φk = {φkw}. The LDA graphical model is shown in Fig. 6,
where z = {zij}, x = {xij}, θ = {θj}, and φ = {φj}, and
Nj is the number of code-words for the j-th symbolic outline
shape. The graphical model in Fig. 6 uses plate notation.

The application to this model to shape representation is
motivated by an intuitive argument. An outline’s code-words
are formed by concatenating symbolic labels (which really
represent chord-length distributions) of adjacent outline ver-
tices. Consequently, code-words tend to encode correlation
patterns of local geometric features (CLDs) of an outline
shape. We assume that such correlations are preserved across
instances of a shape class. We also presume that a particular
shape class may be a mixture of different correlation patterns
that appear with distinctive frequencies (mixing proportions
φ) across class instances. Obviously, different classes may
share the same local correlation patterns, but the point is
that their frequency of occurrence (geometric topic mixing
proportions θ) differs significantly between classes. Such
differences would reflect, to some extent, global shape infor-
mation describing how local geometric features are organized
within a shape class.

Assuming that α and β are given, the joint distribution of
all parameters and variables of the model is

p(x, z,θ,φ|α, β;K) =
D∏
j=1

Γ(Kα)
Γ(α)K

K∏
k=1

θ
njk.+α−1
jk

×
K∏
k=1

Γ(Wβ)
Γ(β)W

W∏
w=1

φn.kw+β−1
kw (1)

where njkw = #{i : xij = w, zij = k}, and dot means
the corresponding index is summed out: n.kw =

∑
j njkw,

and njk. =
∑
w njkw. Given the observed code-words x

the task of Bayesian inference is to compute the posterior
distribution over the latent geometric topic indices z, the

mixing proportions θ, and the geometric topic parameters
φ.

By applying collapsed Gibbs sampling [8] to perform
inference, we construct a Markov Chain that converges to the
posterior distribution on z, and then use the results to infer θ
and φ. To apply this algorithm, we need the full conditional
distribution p(zij = k|z¬ij ,x;K), where the superscript ¬ij
means the corresponding variables or counts xij and zij are
excluded. This conditional distribution is computed in two
steps. First, the marginal distribution p(z,x;K) is obtained
by marginalizing out θ and φ in (1) by applying conjugate
analysis [1]. The collapsed marginal distribution over x and
z is

p(x, z|α, β;K) =
K∏
k=1

Γ(Wβ)
Γ(n.k. +Wβ)

W∏
w=1

Γ(n.kw + β)
Γ(β)

×
D∏
j=1

Γ(Kα)
Γ(nj.. +Kα)

K∏
k=1

Γ(njk. + α)
Γ(α)

(2)

= p(x|z;K)× p(z;K)

where Γ is the gamma function. Second, cancellation of
terms in (2) yields the desired result

p(zij = k|z¬ij ,x, α, β;K) =
n¬ij.kw + β

n¬ij.k. +Wβ
·
n¬ijjk. + α

n¬ijj.. +Kα
. (3)

Having obtained the full conditional distribution, the Gibbs
sampling algorithm is simple. The zij variables are initialized
to values in {1, · · · ,K}, determining the initial state of
the Markov chain. The chain is then run for a number of
iterations, each time finding a new state by sampling each zij
from the distribution in (3). After enough iterations for the
chain to approximate the target distribution, the current value
of the zij variables is recorded. Subsequent samples are taken
after an appropriate lag to ensure that their autocorrelation
is low [8]. The predictive values for θ and φ given z and x
can be estimated from the chain samples by

θ̂jk =
njk. + α

nj.. +Kα
(4)

φ̂kw =
n.kw + β

n.k. +Wβ
(5)

Note from (3) that p(zij = k|z¬ij ,x) ∝ (n¬ij.kw + β)(n¬ij.k. +
Wβ)−1(n¬ijjk. + α); consequently, zij depends on z¬ij only
through the counts n¬ij.kw, n¬ij.k. , and n¬ijjk. . Specifically, the de-
pendence of zij on any particular other variable zi′j′ is very
weak for large data sets. For this reason, the convergence of
collapsed Gibss sampling is expected to be quick [9].

The symbolic shape descriptors for shape Sj ∈ S are
defined by the estimated parameters θ̂j of the LDA model
as the vector

Θj = (Θj1, · · · ,ΘjK)

where Θjk = θ̂jk.
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Fig. 7. Log-likelihood of the data for different settings of the number of
geometric topics, K for α = 50 and β = 1. Standard errors for each point
in the plot were smaller than the plot symbols.

3) LDA model selection: The LDA model depends on α,
β and an unknown parameter K. Following [9], our strategy
in this work is to fix α and β and explore the consequences
of varying K. Given the values of α and β, the problem of
choosing the appropriate K is a problem of model selection
that we approach by computing the likelihood of p(x;K).
We approximate p(x;K) by taking the harmonic mean of a
set of values p(x|z;K) [12], when z is sampled from the
posterior p(z|x;K):

p(x|K) =

[
1
m

m∑
i=1

p(x|z(i);K)−1

]−1

,

where {z(i), i = 1, · · · ,m}, is a sample taken from the Gibbs
sampler described above. The value of p(x|z,K) can be
computed from the first term in right-hand-side of (2):

p(x|z;K) =
K∏
k=1

Γ(Wβ)
Γ(n.k. +Wβ)

W∏
w=1

Γ(n.kw + β)
Γ(β)

.

4) Classification functions: We classify our skull shapes
by applying support vector machines (C-SVMs) to numeric
and symbolic shape descriptors [22]. All the free parameters
of our approach (k, Ws, α, β, and C) were computed
using a cross-validation technique in order to minimize
the leave-one-out classification error [22]. We construct our
SVMs with two kinds of kernels. A standard dot-product
kernel (linear SVM) is used for both, numeric and symbolic
descriptors. In addition, we apply a kernel that yields an
isometric embedding of the SSDs into the unit sphere. More
specifically, let Θi and Θj be the SSDs for Si and Sj , respec-
tively. The kernel is defined as k(Θi,Θj) =

∑K
k=1 Θ

′

ikΘ
′

jk,
where Θ

′

ik =
√

Θik and Θ
′

jk =
√

Θjk. Note that ||Θ′

i|| =
||Θ′

j || = 1.

LDA-SVM-I LDA-SVM-II
S M C S M C

S 96.7 0 5.66 95.6 0 1.89
M 2.2 94.74 1.89 3.3 94.74 3.77
C 1.1 5.26 92.46 1.1 5.26 94.34

PLSA-SVM-I PLSA-SVM-II
S M C S M C

S 95.6 0 5.66 96.7 0 3.77
M 2.2 94.74 1.89 2.2 94.74 3.78
C 2.2 5.26 92.45 1.1 5.26 92.45

FD-PCA FD-RP
S M C S M C

S 93.4 2.63 5.66 95.6 0 5.66
M 2.2 60.53 86.79 1.1 55.26 13.21
C 4.4 36.8 86.79 3.3 34.21 71.7

TABLE I
CONFUSION MATRICES (%) FOR LDA-SVM-I-, LDA-SVM-II-,
PLSA-SVM-I-, PLSA-SVM-II-, FD-PCA- AND FD-RP-BASED

DESCRIPTORS. KEY: SAGITTAL (S), METOPIC (M) AND CONTROL (C).
DIMENSIONALITY REDUCTION RATE WAS SET TO 60:1.

III. RESULTS

We conducted a comparative study of numeric and sym-
bolic shape descriptors in a classification task of synostotic
and normal control head shapes. Our data set consisted of
100 skull shapes with sagittal synostosis, 40 with metopic
synostosis, 16 with right unilateral coronal synostosis, and
of 60 normal controls [20].

The FDs of section II-B.1 were used as our numeric
descriptors with N = 200 and L = 3 that yield 600-D
vectors. We applied PCA and RP techniques to the FDs
in order to reduce their dimensionality to K = 10, thus
achieving a 60-fold dimensionality reduction rate (DRR).
Classification (cross-validation) error rates for FD-PCA and
FD-RP were 15.38% and 19.78%, respectively.

We also tested PLSA-based and LDA-based symbolic
shape descriptors in various classification runs with linear
(LDA-SVM-I and PLSA-SVM-I) and nonlinear (LDA-SVM-
II, PLSA-SVM-II) kernels (see section II-D.4). The classi-
fication errors were comparable: 5.5% for linear SVMs and
4.95% for non-linear SVMs. Symbolic-descriptors were also
10-dimensional vectors. This value of K was chosen using
the model selection techniques described in section II-D.3
(Fig. 7). We performed experiments with β ∈ [1, 5] and
α ∈ [1, 50] and obtained error rates that are comparable to
those reported above and in Table I.

Confusion matrices for all the algorithms tested (FD-
PCA, FD-RP, LDA-SVM-I, LDA-SVM-II, PLSA-SVM-I and
PLSA-SVM-II) show that symbolic descriptors outperform
numeric ones at the given DRR (Table I). Overall, LDA-
and PLSA-based descriptors have comparable performance.
Classification rates are slightly better for non-linear SVMs
(LDA-SVM-II and PLSA-SVM-II). Similar results to those
of Table I were obtained for PLSA- and LDA-based descrip-
tors with DRRs of 75:1 and 85:1 The performance of PCA
and RP-based descriptors deteriorated significantly at these
rates. Computation of LDA parameters for our population



sample took roughly 1 (s) and 20 (s) on average for LDA
and PLSA, respectively. Training and testing of the SVMs
using cross-validation took about 1 (min) for both LDA and
PLSA techniques.

IV. DISCUSSION

Single-suture craniosynostosis constitute an important area
of research that requires the creation of new methods to
characterize cranial anatomy. Quantitative methods for skull-
shape analysis are crucial in the study of cranial abnormali-
ties and their relation to the general physiological state of af-
fected individuals. A step in that direction is the development
of shape descriptors that enable accurate of classification
craniosynostosis malformations.

We have compared the classification performance of LDA-
based SSDs with and numeric descriptors of reduced di-
mensionality and PLSA-based SSDs that have been previ-
ously applied to classify synostotic head shapes. Symbolic
descriptors achieve lower error rates than those of numeric
descriptors at the given DRR (85:1, 75:1, and 60:1). Lower
error rates can be achieved by the numeric shape descriptors
than those reported here [15]. However, such performance
increase comes at the expense of much larger descriptor
sizes and increased probability of classification over-fitting.
Random projection and PCA produced similar error rates in
all our experiments.

LDA-based and PLSA-based SSDs showed comparable
classification behavior. However there are many reasons
why LDA-based descriptors are better suited for applications
in craniosynostosis research. Probabilistic latent semantic
analysis (PLSA) was developed in the context of document
modeling [10] and has been successfully used in a variety
of applications in areas such as object class learning and
recognition [6][7], scene analysis [25], and shape classifica-
tion [15]. However, some studies have shown that PLSA has
severe over-fitting problems [2] [17].

A further difficulty with PLSA in applications to cran-
iosynostosis research is that the parameters of the model
are computed by applying a maximum likelihood estimation
approach (often by means of the EM algorithm), which
produces a local maxima solution of the problem (that is to
say, a non-unique set of PLSA-based SSDs). Different runs
of the estimation algorithm will generally provide different
solutions. This is due to the fact that the initial guess of the
model parameters are often set at random values.

Although we have shown that the multiplicity of local
solutions is not an issue in relation to classification perfor-
mance, it may be a problem in terms of the shape represen-
tation. Symbolic shape descriptors are not only applied to
head shape classification. They are also used to characterize
possible associations (via regression models) between cranial
shape and a diversity of genetic, physiological or neuro-
physiological variables, representing the status of an affected
patient. For this reason we suggest that the use of PLSA-
based SSDs to shape representation should be carefully ex-
amined. On the other hand, LDA is a well defined generative

model that generalizes easily to new symbolic outline shapes
[2]. Our implementation of the LDA model uses a Monte
Carlo procedure that provides model parameters computed
by averaging the local solutions of the likelihood function
[9], thus avoiding the problem of multiple of solutions and
over-fitting.

We are aware of popular shape descriptors and template-
matching techniques for computer vision that are related
to our work. An example is the well known shape context
algorithm developed in [3]. Although the shape context has
been successfully in 2-D object recognition, it is difficult to
apply to our classification problem since we have several
outlines representing a skull shape and the shape context
algorithm can only deal with a single outline at a time.
Moreover, the shape-context representation leads to high-
dimensional shape descriptors. The shape context of a skull
shape typically is of size O(LNM) with M ∼ 102.

It is worth mentioning that we found error rates for
unicoronal synostosis were on the order of 30% (data not
shown). This is likely due to the fact that shape descriptors
were computed from CT image slices (planes A, F and
M) that were originally selected to represent sagittal and
metopic synostosis but may not be representative of unicoro-
nal malformation. Also, the population size for these group
of patients is small (16 infants). Further work and a larger
sample size is required to improve the statistical significance
of this finding.

Finally we note that in all our experiments, classification
results obtained with the non-linear SVM appeared to be
higher than those obtained with the linear SVM. Therefore
we suggest the square root parameterization described in sec-
tion II-D.4 may be directly used to construct the alternative
descriptors Θ′, which could be used for classification and
other problems related to craniosynostosis research.

V. CONCLUSION

We have presented an approach that uses a hierarchi-
cal Bayesian model and SSDs to classify synostotic head
shapes. We conducted a comparative study with previously
reported numeric and PLSA-based SSDs and showed that
our proposed descriptors better characterize craniosynostosis
malformations and provides low error rates compare to those
of traditional numeric descriptors. Our results would be
strengthened in future by larger data sets and by applications
beyond classification. Nevertheless, this exploratory analysis
suggests that the LDA-based SSDs will be a useful tool in
the study of single-suture craniosynostosis.
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