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Abstract

Cluster Analysis of Gene Expression Data

by Ka Yee Yeung

Chair of Supervisory Committee:

Professor Walter L. Ruzzo
Department of Computer Science and Engineering

The invention of DNA microarrays allows us to study simultaneous variations of genes at
the genome-wide scale. A typical gene expression data set consists of thousands or even tens
of thousands of genes, and a few dozens experiments. Cluster analysis is the art of finding
groups in a given data set such that objects in the same group are similar to each other
while objects in different groups are dissimilar. There are many applications for clustering
gene expression data.

Many different clustering algorithms and analytical techniques have been applied to gene
expression data. Success of various analytical methodologies in specific instances has been
reported, but extensive quantitative evaluations of clustering methodologies are rare. Since
different analytical approaches may produce different clustering results, there is a great
need to evaluate clustering techniques in order to choose an appropriate approach. An
underlying theme of this dissertation is systematic evaluations of clustering methodologies
on gene expression data. Specifically, we proposed a data-driven methodology, called the
figure of merit (FOM) methodology, to compare the quality of clusters from heuristic-
based clustering algorithms. We also showed that the model-based clustering approach,
which assumes the Gaussian mixture model, produces relatively high quality clusters. The
probabilistic framework in the model-based approach allows us to infer the correct number

of clusters, and to compare different models. Moreover, we investigated the effectiveness






of a dimension reduction technique called principal component analysis as a pre-processing
step before cluster analysis.

Our main contributions are evaluation methodologies of analytical techniques in clus-
tering gene expression data. We employed an external validation approach, which evaluates
clustering results by comparing to external prior knowledge of the data, to assess the per-
formance of internal validation approaches, which do not require any external knowledge
of the data. In particular, we showed that our FOM methodology and the model-based
approach, which do not require any external knowledge of the data, produce comparisons
of clustering algorithms that are consistent with comparisons to external knowledge. Since
external knowledge is seldom available for gene expression data, our work provides practical

evaluation frameworks for assessing clustering results on gene expression data.
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GLOSSARY

ADENOCARCINOMA: a malignant tumor.!

CDNA: DNA synthesized from an RNA template using reverse transcriptase.?
CYTOKERATIN: intermediate filament proteins of epithelial cells.

DNA: deoxyribonucleic acid; the molecule that encodes genetic information.

ENDOSCOPIC BIOPSY: tissue sample taken from the esophagus or stomach during en-

doscopy which can be used for genetic testing or histologic evaluation.!

ENDOSCOPY: a procedure in which a flexible tube with a fiber optic camera is inserted
into the esophagus and stomach in order to visualize any abnormalities and collect

tissue samples for further analysis.!

EPITHELIUM: membrane tissue composed of one or more layers of cells separated by very
little intercellular substance and forming the covering of most internal and external

surfaces of the body and its organs.!

ESOPHAGECTOMY: surgical removal of the esophagus.3

GASTROESOPHAGEAL REFLUX DISEASE (GERD): usually referred to as “heartburn”; a
burning discomfort in the chest and regurgitation of sour tasting gastric juice into the

mouth are classic symptoms of GERD.?

1From the web page of the Seattle Barrett’s Esophagus Program at
http://www.thcre.org/science/phs/barretts/glossary.htm

2From the BioTech Life Sciences Resources and Reference Tools at http://biotech.icmb.utexas.edu

3From http://www.barrettsinfo.com
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GENE: a segment of DNA which normally specifies a functional unit.

GENE EXPRESSION: the process by which a gene’s coded information is converted to the

structures present and operating in the cell.?

HISTOLOGY: the anatomical study of the microscopic structure of animal and plant

tissues.!

IN VIVO: a biological or biochemical process occurring within a living organism.?
METAPLASIA: abnormal replacement of cells of one type by cells of another.*
NEOPLASTIC: an abnormal new growth of tissue in animals or plants.
PHENOTYPE: the physical appearance or observable characteristics of an organism.?

PREMALIGNANT: preceding the development of cancer.!

PROBE: a DNA or RNA fragment which has been labeled; usually used to identify DNA

or RNA sequences which are closely related in sequence.

RNA: ribonucleic acid; a chemical found in the nucleus and cytoplasm of cells. The

structure of RNA is similar to that of DNA.2

REVERSE TRANSCRIPTASE: an enzyme that synthesizes a ¢cDNA strand from an RNA

template.

TRANSCRIPTION: the synthesis of RNA from DNA.

*Merriam Webster Medical Dictionary
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Chapter 1

INTRODUCTION

Even until about a decade ago, being able to study simultaneous variations of genes at
the genome-wide scale was only a dream, and happened only in science fiction. With the
invention of the DNA microarrays, real life technology has caught up with science fiction,
and measuring variations of genes at the genome-wide scale is no longer a dream. DNA
microarrays offer a global view on the levels of activity of many genes simultaneously. In
fact, Lander [49] suggested that the global views provided by DNA microarrays would help
us to understand the “Periodic Table of Life”. Massive amounts of DNA microarray data
have been generated by many researchers. The challenge is the development of analytical

techniques to make sense out of the large amounts of biological data.

With current technology, the expression levels of thousands of genes can be measured
from a single DNA microarray (sometimes called a DNA chip). The number of measure-
ments of gene expression levels on a single array is increasing with advances in technology.
There are different technologies producing gene expression data. Two examples are the
c¢DNA arrays in which the expression levels are measured with respect to a reference target
[64] and the commercially available Affymetrix chips [13]. Shamir and Sharan [75] pro-
vided a concise summary of the different types of DNA microarrays. The types of array
technology do not affect the analysis described in this dissertation unless otherwise stated.
We can study the variations of thousands of genes under different experimental conditions
using a series of DNA microarrays. The experimental condition for each DNA microarray
is determined by the goal of the scientific study. For example, the experimental conditions
represent different time points in Cho et al. [20], in which the variations of the yeast genes

over the time course of two cell cycles are studied. In Schummer et al. [72], the goal is to



characterize genes with different expression levels in normal ovary tissue samples and can-
cerous ovary tissue samples, and so the experimental conditions represent different tissue
samples.

In a typical gene expression data set, the number of genes is usually much larger than the
number of experiments. Even a simple organism like yeast has approximately six thousand
genes. It is estimated that humans have approximately thirty thousand to forty thousand
genes [22]. Since the cost of the study is driven by the number of DNA chips used (and
hence by the number of experiments), the number of experiments is mostly a few dozens
in published gene expression papers. The number of experiments is expected to increase as

the costs of DNA chips go down.

1.1 Clustering gene expression data

Cluster analysis is the art of finding groups in a given data set such that objects in the
same group are similar to each other while objects in different groups are as dissimilar as
possible [46]. Clustering is a very well-studied problem, and there are many algorithms
designed for cluster analysis in the literature. Because of the large number of genes and the
complexity of biological networks, clustering is a useful exploratory technique for analysis
of gene expression data.

There are many applications of clustering gene expression data. Genes with related func-
tions are expected to have similar expression patterns, so clustering of genes may suggest
possible roles for genes with unknown functions based on the known functions of some other
genes that are placed in the same cluster. For example, Chu et al. [21] applied clustering
to yeast genes to identify genes whose expression levels peak at different phases in sporula-
tion. Clustering of genes is sometimes used as a preprocessing step in inferring regulatory
networks. For example, Chen et al. [18] used clustering to identify genes that have similar
expression patterns to reduce the size of the regulatory network to be inferred. Gene clus-
ters from expression data can also be used with sequence data to identify upstream DNA
sequence patterns specific to each expression cluster [78]. These upstream DNA sequence

patterns may co-regulate genes within the same clusters. There are many published gene



expression data sets with different types of tissue samples. For example, some of the exper-
iments may represent normal tissue samples while some experiments represent cancerous
tissue samples at different stages of malignancy. Clustering the experiments may shed light
on new subtypes of cancer which subsequently may require different treatment. For exam-
ple, Golub et al. [32] demonstrated that clustering of the experiments can potentially lead
to discovery of subtypes of leukemia.

Many clustering algorithms have been proposed for gene expression data. For example,
Eisen et al. [27] applied a variant of the hierarchical average-link clustering algorithm to
identify groups of co-regulated yeast genes. Ben-Dor et al. [10],[9] reported success with
their CAST algorithm. The classic iterative k-means algorithm is also widely used to cluster
gene expression data, for example, [78]. Tamayo et al. [77] used self-organizing maps (SOM)
to identify gene clusters in the yeast cell cycle and human hematopoietic differentiation
data sets. These algorithms can be applied to cluster either the genes or the experiments.
Some of these algorithms will be discussed in more detail in Chapter 2. There are also
clustering approaches that cluster both the genes and the experiments simultaneously, for
example, Lazzeroni and Owen [50], Cheng and Church [19]. One of the applications of
clustering the genes and the experiments simultaneously is to find subsets of genes with
similar expression patterns with respect to subsets of experiments. In this dissertation, the
focus is on clustering of genes, and the term clustering refers to clustering of the genes unless

otherwise stated.

1.2 What this thesis is about

Many different analytical techniques have been used in the context of clustering gene ex-
pression data, and instances of success from many different methods have been reported in
specific applications. Different analytical techniques usually lead to different results. There
is little or no systematic comparison of different analytical approaches in the context of clus-
tering gene expression data. Our goal is to propose methodologies for systematic evaluation
of analytical techniques in clustering gene expression data. An underlying theme of this dis-

sertation is application of new or existing methodologies to clustering gene expression data,



and quantitative evaluation of the methodologies. Specifically, we used gene expression data
sets with external criteria to evaluate analytical methodologies by comparing clustering re-
sults to the external criterion (which serves as ideal clusters of the data). Chapter 2 covers
the background for the rest of the dissertation. In particular, the clustering algorithms we
applied, and both real gene expression data sets and synthetic data sets we used will be
described. The statistic we used to assess agreement of clustering results to the external
criterion is also described in Chapter 2.

Many different clustering algorithms have been proposed to analyze gene expression
data, and success in their applications had been reported. However, there is no clustering
algorithm of choice in the gene expression analysis community. Moreover, different clus-
tering algorithms can potentially generate very different clusters on the same data set. A
biologist with a gene expression data set is faced with the problem of choosing an appro-
priate clustering algorithm for his or her data set. In much of the published clustering
work on gene expression, the success of clustering algorithms is assessed by visual inspec-
tion using biological knowledge (for example, Michaels et al. [61] and Eisen et al. [27]).
Our FOM (figure of merit) methodology on comparing the performance of clustering algo-
rithms (described in Chapter 3) provides a quantitative data-driven framework (which does
not require any external prior knowledge of the data) to help biologists to choose a good
clustering algorithm.

Other analytical techniques, such as principal component analysis (PCA), have also
been proposed to analyze gene expression data. PCA [43] is a classical technique to reduce
the dimensionality of the data set by transforming to a new set of variables to summarize
the features of the data. Using different data analysis techniques and different clustering
algorithms to analyze the same data set can lead to very different conclusions. For example,
Chu et al. [21] identified seven clusters in the sporulation data set, but Raychaudhuri et al.
[67] suggested that there are no clusters present in the same data set by viewing the data
points in the space of the first two principal components (PC’s). There is a great need to
investigate the effectiveness of PC’s in capturing cluster structure on gene expression data.
In particular, the effectiveness of the traditional approach of using the first few PC’s (which

capture most of the variation in the data) should be investigated. Our work described in



Chapter 4 is an attempt at such an empirical study.

Most of the clustering algorithms proposed to analyze gene expression data sets are based
largely on heuristics. Clustering algorithms based on probability models offer a rigorous
alternative to heuristic-based algorithms. In particular, model-based clustering assumes
that the data is generated by a mixture of multivariate normal distributions. This Gaussian
mixture model has been shown to be a powerful tool for many applications. The issues
of selecting a “good” clustering method and determining the “correct” number of clusters
are reduced to model selection problems under the probability framework. We evaluated
both the quality of clusters and the model chosen by the model-based clustering approach
using real and synthetic data sets with external criteria. Since we do not expect raw
gene expression data to satisfy the Gaussian mixture assumption (which is implicit in the
model-based approach), we also investigated the degree to which different transformations
of real gene expression data sets satisfy the Gaussian mixture assumption. In addition, we
also compared the results from the model-based approach to a leading heuristic clustering
algorithm. The results are presented in Chapter 5.

The Barrett’s esophagus data set [7] provides us with a test bed for some of our analytical
techniques. Our collaboration with the Reid Lab at the Fred Hutchinson Cancer Research
Center in Seattle provides us with biological feedback for our quantitative methodologies.
Barrett’s esophagus is a pre-cancer condition in which the normal squamous epithelium in
the esophagus is replaced by the Barrett’s epithelium. The Barrett’s esophagus data set
consists of different tissue types from the human gastrointestinal (GI) tract. In particular,
there are three types of normal GI tissue samples (squamous, gastric and duodenum), and
one pre-cancer tissue type (Barrett’s epithelium). The goal of the study is to compare the
pre-cancerous Barrett’s epithelium to the surrounding normal GI tissues, and to study the
expression levels of genes with respect to different tissue types. In order to reduce the
number of genes in the clustering step, we developed a novel filtering approach to identify
genes that are differentially expressed in each tissue type. We then applied our filtering
approach and our FOM methodology to the filtered Barrett’s esophagus data set. From our
clustering results, our collaborators identified a set of biologically interesting genes. The

data set and our analysis will be presented in Chapter 6.



1.3 Our Contributions

Our main contributions are evaluation methodologies of analytical techniques in clustering
gene expression data. Data sets with external criteria enable us to investigate the perfor-
mance of analytical techniques systematically. For example, we evaluated the clustering
results using the PC’s by comparing to the external criteria in Chapter 4. Since external
criteria are rarely available for real gene expression data, we also used the external crite-
ria to evaluate cluster validation approaches that do not require any external knowledge
of the data. In Chapter 3 and Chapter 5, we demonstrated that the FOM methodology
and the model-based approach produce comparisons of different clustering algorithms that
are consistent with those from the external criteria. Our results provided confidence in
the conclusions drawn from the FOM and model-based approaches in which no external
knowledge of the data is required. In addition, we also provided specific guidelines and
recommendations for clustering gene expression data in this dissertation. For example, we
concluded that CAST and k-means tend to produce higher quality clusters than the hierar-
chical clustering approaches in Chapter 3, and we recommended clustering with the original

data instead of using the PC’s in Chapter 4.



Chapter 2

BACKGROUND

This chapter covers concepts that are used throughout this dissertation, including de-
tailed description of clustering algorithms we used in our study, real and synthetic gene
expression data sets to which we applied our analytical techniques, and the statistic used to
assess agreement between clustering results and the external criteria (which serve as ideal

clusters) of the data sets.

2.1 Cluster Analysis

2.1.1 Mathematical Formulations

Given a set of n objects S = {O1,...,0,}, let C = {C1,Cy,...,Ck} be a partition of S, i.e.,
a set of subsets of S such that U¥_C; = S and C; N C; =0 for 1 < i # j < k. Each subset
C; (where 1 < 4 < k) is called a cluster, and C is called a clustering result." The goal of
cluster analysis is to assign objects to clusters such that objects in the same cluster are more
similar to each other while objects in different clusters are as dissimilar as possible. There
are many ways to mathematically formulate the objectives of within-cluster homogeneity
and between-cluster separation, leading to many different optimization problems.

A data set containing objects to be clustered is usually represented in one of two formats:
the data matriz and the similarity (or dissimilarity) matriz. In a data matrix, the rows
usually represent objects, and the columns usually represent features or attributes of the
objects. Suppose there are n objects and p attributes. We assume the rows represent
genes and the columns represent experiments, such that entry (i,e) in the data matrix D
represents the expression level of gene ¢ under experiment e, where 1 <7 <mnand1<e <p.

The ith row in the data matrix D (where 1 < i < n), D;, represents the ezpression vector of

"We assume hard clustering in this dissertation, i.e., each object is assigned to one and only one cluster.



gene ¢ across all p experiments. In clustering genes, the objects to be clustered are the genes.
The similarity (or dissimilarity) matrix contains the pairwise similarity (or dissimilarity) of
genes. Specifically, entry (7, 7) in the similarity (or dissimilarity) matrix Sim represents the
similarity (or dissimilarity) of gene i and gene j, where 1 < 4,7 < n. The similarity (or
dissimilarity) of gene i and gene j can be computed using the expression vectors of gene i
and gene j from the data matrix. Hence, the similarity (or dissimilarity) matrix Sim can be
computed from the data matrix D. However, the data matrix D cannot be fully recovered

from the similarity matrix (especially when the number of experiments p is not known).

2.1.2 Similarity metrics

The measure used to compute similarity or dissimilarity between a pair of objects is called a
similarity metric. Many different similarity metrics have been used in clustering gene expres-
sion data, among which the two most popular similarity metrics are correlation coefficient
and Euclidean distance. Correlation coefficient is a similarity measure (a high correlation
coefficient implies high similarity) while Euclidean distance is a dissimilarity measure (a
high Euclidean distance implies low similarity).

The correlation coefficient between a pair of genes 7 and j (1 < 4,j < n) is defined as

e=1(D(i,e) — pa)(D(G,e) — )/ (Il Di |lll Dj 1), where ps = 352_, D(i, )/p is the average

e=1 e=1

expression level of gene 7 over all p experiments and || D; ||= \/ P _(D(iye) — p;)? is the
norm of the centered expression vector D;. Correlation coefficients range from -1 to 1.
The correlation coefficient of two genes with identical expression vectors is 1. Two genes
having correlation coefficient 0 are said to be uncorrelated, and two genes having correlation
coefficient -1 are said to 