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1. Introduction

DNA microarrays offer a global view on the levels of activity of many
genes simultaneously. In a typical gene expression data set, the number
of genes is usually much larger than the number of experiments. Even
a simple organism like yeast has approximately six thousand genes. It
is estimated that humans have approximately thirty thousand to forty
thousand genes (Lander et al., 2001).

The goal of cluster analysis is to assign objects to clusters such that
objects in the same cluster are more similar to each other while objects
in different clusters are as dissimilar as possible. Clustering is a very
well-studied problem, and there are many algorithms for cluster analysis
in the literature. Please refer to (Anderberg, 1973), (Jain and Dubes,
1988), (Kaufman and Rousseeuw, 1990), (Hartigan, 1975) and (Everitt,
1993) for a review of the clustering literature. Because of the large
number of genes and the complexity of biological networks, clustering is
a useful exploratory technique for analysis of gene expression data.

In this chapter, we will examine a few clustering algorithms that
have been applied to gene expression data, including Cluster Affini-
ty Search Technique (CAST) (Ben-Dor and Yakhini, 1999), (Ben-Dor
et al., 1999), k-means (MacQueen, 1965), (Tavazoie et al., 1999), Parti-
tioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990), and
model-based clustering (Fraley and Raftery, 1998), (Yeung et al., 2001a).
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Figure 16.1. (a) A data matrix. (b) A similarity matrix.

2. Background and Notations

A data set containing objects to be clustered is usually represented in
one of two formats: the data matriz or the similarity (or dissimilarity)
matriz. In a data matrix, the rows usually represent objects, and the
columns usually represent features or attributes of the objects. Suppose
there are n objects and p attributes. We assume the rows represent genes
and the columns represent experiments, such that entry (4, e) in the data
matrix D represents the expression level of gene 7 under experiment e,
where 1 < i < mand 1 < e < p (see Figure 16.1a). The ith row in
the data matrix D (where 1 < i < n), D;, represents the expression
vector of gene i across all p experiments. In clustering genes, the objects
to be clustered are the genes. The similarity (or dissimilarity) matrix
contains the pairwise similarity (or dissimilarity) of genes. Specifically,
entry (7,7) in the similarity (or dissimilarity) matrix Sim represents the
similarity (or dissimilarity) of gene i and gene j, where 1 < i,5 < n (see
Figure 16.1b). The similarity (or dissimilarity) of gene i and gene j can
be computed using the expression vectors of gene ¢ and gene j from the
data matrix. Hence, the similarity (or dissimilarity) matrix Sim can
be computed from the data matrix D. For the rest of the chapter, the
objects to be clustered are the genes in a given gene expression data set
unless otherwise stated.

3. Similarity metrics

The measure used to compute similarity or dissimilarity between a
pair of objects is called a similarity metric. Many different similarity
metrics have been used in clustering gene expression data, among which
the two most popular similarity metrics are correlation coefficient and
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Euclidean distance. Correlation coefficient is a similarity measure (a
high correlation coefficient implies high similarity) while Euclidean dis-
tance is a dissimilarity measure (a high Euclidean distance implies low
similarity).

The correlation coefficient between a pair of genes 7 and j (1 <14,j <
n) is defined as
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where p; = 3P, D(i,e)/p is the average expression level of gene i over
all p experiments and || D; ||= \/Zgzl(D(i, €) — pi)? is the norm of the
expression vector D; with the mean subtracted. Correlation coefficients
range from -1 to 1. Two genes with correlation coefficient equals to 1 are
perfectly correlated, i.e., their expression levels change in the same direc-
tion across the experiments. On the other hand, a correlation coefficient
of -1 means that two genes are anti-correlated, i.e., their expression lev-
els change in opposite directions. Geometrically, correlation coefficients
capture the patterns of expression levels of two genes. For example, two
genes with different average expression levels but with expression levels
peaking at the same experiments have a high correlation coefficient.

The Euclidean distance between a pair of genes 7 and j (1 < i,j <n)
is defined as

e=1

JZ(D(i,e) — D(j,e))? (16.2)

A high Euclidean distance between a pair of genes indicates low similari-
ty between the genes. Unlike correlation coefficients, Euclidean distances
measure both the direction and amplituide difference in expression lev-
els. For example, two genes peaking at the same experiments but with
different average expression levels may lead to a large Euclidean distance,
especially if the difference in average expression levels is high.

4. Clustering algorithms

There is a rich literature in clustering algorithms, and there are many
different classifications of clustering algorithms. One classification is
model-based versus heuristic-based clustering algorithms. The objects to
be clustered are assumed to be generated from an underlying probability
framework in the model-based clustering approach. In the heuristic-
based approach, an underlying probability framework is not assumed.
The inputs to a heuristic-based clustering algorithm usually includes
the similarity matrix and the number of clusters. CAST and PAM are
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examples of the heuristic-based approach. The k-means algorithm was
originally proposed as a heuristic-based clustering algorithm. However,
it was shown to be closely related to the model-based approach (Celeux
and Govaert, 1992).

4.1 CAST

The Cluster Affinity Search Technique (CAST) (Ben-Dor and Yakhini,
1999), (Ben-Dor et al., 1999) is a graph-theoretic algorithm developed to
cluster gene expression data. In graph-theoretic clustering algorithms,
the objects to be clustered (genes in this case) are represented as nodes,
and pairwise similarities of genes are represented as weighted edges in a
graph. The inputs to CAST include the similarity matrix Sim, and a
threshold parameter ¢ (which is a real number between 0 and 1), which
indirectly controls the number of clusters.

4.1.1 Algorithm outline. CAST is an iterative algorithm in
which clusters are constructed one at a time. The current cluster under
construction is called Cypen. The affinity of a gene g, a(g), is defined
as the sum of similarity values between g and all the genes in Cypen,
i.e., a(g) = XpeCopen S4M(9, ). A gene g is said to have high affinity if
a(g) > t|Copen|. Otherwise, g is said to have low affinity. Note that the
affinity of a gene depends on the genes that are already in Copen. When
a new cluster Cypep is started, the initial affinity is zero because Copen, is
empty. A gene not yet assigned to any clusters and having the maximum
average similarity to all unassigned genes is chosen to be the first gene
in Copen- The algorithm alternates between adding high affinity genes to
Copen, and removing low affinity genes from Copen. Copen is closed when
no more genes can be added to or removed from it. Once a cluster is
closed, a new Cpep, is formed. The algorithm iterates until all the genes
have been assigned to clusters and the current C,,, is closed. After the
CAST algorithm converges (assuming it does), there is an additional
iterative step, in which all clusters are considered at the same time, and
genes are moved to the cluster with the highest average similarity. For
details of CAST, please refer to (Ben-Dor and Yakhini, 1999).

4.1.2 Algorithm properties. Correlation coefficient is usu-
ally used as the similarity metric for CAST. From our experience, the
iterative step in CAST may not converge if Euclidean distance is used
as the similarity metric.

In contrast to the hierarchical clustering approach in which objects
are successively merged into clusters, objects can be added to or removed
from the current open cluster through the iterative steps. CAST tends
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to produce relatively high quality clusters, compared to the hierarchical
approach (Yeung et al., 2001b).

4.2 K-means

K-means is another popular clustering algorithm in gene expression
analysis. For example, Tavazoie et al. (Tavazoie et al., 1999) applied
k-means to cluster the yeast cell cycle data (Cho et al., 1998).

4.2.1 Algorithm outline. K-means (MacQueen, 1965) is a
classic iterative clustering algorithm, in which the number of clusters,
k, together with the similarity matrix are inputs to the algorithm. In
the k-means clustering algorithm, clusters are represented by centroids,
which are cluster centers. The goal of k-means is to minimize the sum
of distances from each object to its corresponding centroid. In each
iteration, each gene is assigned to the centroid (and hence cluster) with
the minimum distance (or equivalently maximum similarity). After the
gene re-assignment, new centroids of the k clusters are computed. The
steps of assigning genes to centroids and computing new centroids are
repeated until no genes are moved between clusters (and centroids are
not changed). K-means was shown to converge for any metric (Selim
and Ismail, 1984).

4.2.2 Effect of initialization. Initialization plays an impor-
tant role in the k-means algorithm. In the random initialization ap-
proach, the k initial centroids consist of k£ randomly chosen genes. An
alternative approach is to use clusters from another clustering algorith-
m as initial clusters, for example, from hierarchical average-link. The
advantage of the second approach is that the algorithm becomes deter-
ministic (the algorithm always yields the same clusters). (Yeung et al.,
2001b) showed that the iterative k-means step after the hierarchical step
tends to improve cluster quality.

4.2.3 Algorithm properties. Clusters obtained from the k-
means algorithm tend to be equal-sized and spherical in shape. This
is because the k-means algorithm is closely related to the equal volume
spherical model in the model-based clustering approach (Celeux and
Govaert, 1992).

4.2.4 Implementation. K-means is implemented in many s-
tatistical software packages, including the commercial software Splus (
Everitt, 1994), and the GNU free software R (Ihaka and Gentleman,
1996). It is also available from other clustering packages tailored toward
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gene expression analysis, such as XCLUSTER from Gavin Sherlock, which
is available at http://genome-www.stanford.edu/"sherlock/cluster

4.3 PAM

Partitioning around Medoids (PAM) (Kaufman and Rousseeuw, 1990)
searches for a representative object for each cluster from the data set.
These representative objects are called medoids. The clusters are ob-
tained by assigning each data point to the nearest medoid. The objective
is to minimize the total dissimilarity of objects to their nearest medoid.
This is very similar to the objective of k-means, in which the total dis-
similarity of objects to their centroids is minimized. However, unlike
centroids, medoids do not represent the mean vector of data points in
clusters.

4.3.1 Algorithm outline. The inputs to PAM include the
similarity or dissimilarity matrix and the number of clusters k. The
algorithm of PAM consists of two stages. In the first BUILD stage, an
initial clustering is obtained by successive selection of representative ob-
jects until k objects are found. In the second SWAP stage, all pairs of
objects (i, h), for which object 4 is in the current set of medoids and ob-
ject h is not, are considered. The effect on the object function is studied
if object h is chosen as a medoid instead of object 3.

4.3.2 Algorithm properties. PAM can be considered as a
robust version of k-means since medoids are less affected by outlier-
s. Similar to k-means, PAM also tends to produce spherical clusters (
Kaufman and Rousseeuw, 1990).

4.3.3 Implementation. PAM is implemented in statistical
packages such as Splus and R.

5. Assessment of Cluster Quality

We have discussed three different heuristic-based clustering algorithms
to analyze gene expression data. Different clustering algorithms can
potentially generate different clusters on the same data set. However,
no clustering method has emerged as the method of choice in the gene
expression community. A biologist with a gene expression data set is
faced with the problem of choosing an appropriate clustering algorithm
for his or her data set. Hence, assessing and comparing the quality of
clustering results is crucial.

.html.
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Jain and Dubes (Jain and Dubes, 1988) classified cluster validation
procedures into two main categories: external and internal criterion anal-
ysis. Ezxternal criterion analysis validates a clustering result by compar-
ing to a given “gold standard” which is another partition of the objects.
Internal criterion analysis uses information from within the given data
set to represent the goodness of fit between the input data set and the
clustering results.

5.1 External Validation

In external validation, a clustering result with a high degree of a-
greement to the “gold standard” is considered to contain high quality
clusters. The gold standard must be obtained by an independent pro-
cess based on information other than the given data. This approach
has the strong benefit of providing an independent, hopefully unbiased
assessment of cluster quality. On the other hand, external criterion anal-
ysis has the strong disadvantage that an external gold standard is rarely
available.

Both clustering results and the external criteria can be considered as
partitions of objects into groups. There are many statistical measures
that assess the agreement between two partitions, for example, the ad-
justed Rand index (Hubert and Arabie, 1985). The adjusted Rand index
is used to assess cluster quality in (Yeung and Ruzzo, 2001) and (Yeung
et al., 2001a).

5.2 Internal Validation

Internal criterion analysis does not require an independent external
criteria. Instead, it assesses the goodness of fit between the input data
set and the clustering results. We will briefly describe three internal
validation approaches.

5.2.1 Homogeneity and separation. Since objects in the
same cluster are expected to be more similar to each other than objects
in different groups and objects in different clusters are expected to be
dissimilar, homogeneity of objects in the same cluster and separation be-
tween different clusters are intuitive measures of cluster quality (Shamir
and Sharan, 2001). Homogeneity is defined as the average similarity
between objects and their cluster centers, while separation is defined as
the weighted average similarity between cluster centers. A high homo-
geneity indicates that objects in clusters are similar to each other. A
low separation means that different clusters are not well-separated.
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5.2.2 Silhouette. Silhouettes can be used to evaluate the
quality of a clustering result. Silhouettes are defined for each object
(gene in our context) and are based on the ratio between the distances
of an object to its own cluster and to its neighbor cluster (Rousseeuw,
1987). A high silhouette value indicates that an object lies well within
its assigned cluster, while a low silhouette value means that the object
should be assigned to another cluster. Silhouettes can also be used to
visually display clustering results. The objects in each cluster can be
displayed in decreasing order of the silhouette values such that a cluster
with many objects with high silhouette values is a pronounced cluster.
Silhouettes are implemented in Splus and R. In order to summarize the
silhouette values in a data set with k clusters, the average silhouette
width, is defined to be the average silhouette value over all the objects
in the data. The average silhouette width can be used as an internal
validation measure to compare the quality of clustering results.

5.2.3 Figure of merit. (Yeung et al., 2001b) proposed the
figure of merit (FOM) approach to compare the quality of clustering
results. The idea is to apply a clustering algorithm to all but one exper-
iment in a given data set, and use the left-out experiment to assess the
predictive power of the clustering algorithm.

Intuitively, a clustering result has possible biological significance if
genes in the same cluster tend to have similar expression levels in addi-
tional experiments that were not used to form the clusters. We estimate
this predictive power by removing one experiment from the data set,
clustering genes based on the remaining data, and then measuring the
within-cluster similarity of expression values in the left-out experiment.
The figure of merit (FOM) is a scalar quantity, which is an estimate of
the predictive power of a clustering algorithm.

6. Model-based approach

Clustering algorithms based on probability models offer a principled
alternative to heuristic algorithms. The issues of selecting a “good”
clustering method and determining the “correct” number of clusters are
reduced to model selection problems in the probability framework. This
provides a great advantage over heuristic clustering algorithms, for which
there is no rigorous method to determine the number of clusters or the
best clustering method. (Yeung et al., 2001a) applied the model-based
approach to various gene expression and synthetic data, and showed that
the model-based approach tends to produce higher cluster quality than
the heuristic-based algorithms.
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6.1 The model-based framework

In model-based clustering, the data is assumed to be generated from a
finite mizture of underlying probability distributions®. In other words,
we assume the data consists of different groups (or components), and
each group (or component) is generated from a known probability dis-
tribution. Based on this assumption, the goal of model-based clustering
algorithms is to recover clusters that correspond to the components in
the data.

There are many possible probability distributions underlying each
group (or component). In this chapter, we assume a Gaussian mizture
model in which each component is generated by the multivariate nor-
mal distribution (also known as the multivariate Gaussian distribution)?.
Gaussian mixture models have been shown to be a powerful tool for clus-
tering in many applications, for example, (Banfield and Raftery, 1993), (
Celeux and Govaert, 1993), (McLachlan and Basford, 1988), (McLachlan
and Peel, 2000).

The multivariate normal distribution is parameterized by the mean
vector p and covariance matrix 3. When the objects to be clustered are
the genes, the mean vector y is of dimension p (which is the number of
experiments). The mean vector of a component is equal to the average
expression level of all the genes in that component. Hence, the mean
vector represents the location where the component is centered at. The
covariance matrix X is a p by p matrix such that X (4, j) represents the
covariance of experiment ¢ and experiment j. The diagonal entries in
the covariance matrix are the variances of the p experiments?.

Let G be the number of components in the data. In the Gaussian
mixture assumption, each component k (where k = 1,...,G) is gener-
ated by the multivariate normal distribution with parameters p; (mean
vector) and X (covariance matrix). The number of components G is
assumed to be known. The goal is to estimate the parameters p; and
Yk from the data (where k = 1,...,G), and find clusters corresponding
to these parameter estimates.

In order to make estimation of the parameters easier, (Banfield and
Raftery, 1993) proposed a general framework to decompose the covari-
ance matrix

Y = M Dy Ap DY, (16.3)

where Dy is an orthogonal matrix, Ay is a diagonal matrix, and Ag is
a scalar. The matrix Dy, determines the orientation of the component,
A determines its shape, and A\ determines its volume. Hence, the
covariance matrix ¥, controls the shape, volume and orientation of each
component.
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Figure 16.2. Fictitious examples illustrating (a) the unequal volume spherical model
in which clusters are spherical but may have different volumes and (b) the unequal
volume spherical model in which clusters are spherical but may have different vol-
umes.

Allowing some but not all of the parameters in Equation 16.3 to vary
results in a set of models within this general framework. In particu-
lar, constraining DkAkD,z to be the identity matrix I corresponds to
Gaussian mixtures in which each component is spherical. For example,
the equal volume spherical model, which is parameterized by ¥, = A,
represents the most constrained model under this framework, with the
smallest number of parameters*. The classical k-means clustering algo-
rithm has been shown to be closely related to this model (Celeux and
Govaert, 1992). However, there are circumstances in which this model
may not be appropriate. For example, if some groups of genes are much
more tightly co-regulated than others, a model in which the spherical
components are allowed to have different volumes may be more appropri-
ate. The unequal volume spherical model (see Figure 16.2a), ¥ = Mg [,
allows the spherical components to have different volumes by allowing
a different A\ for each component k. We have also observed consider-
able correlation between experiments in time-series experiments, coupled
with unequal variances. An elliptical model may better fit the data in
these cases, for example, the unconstrained model (see Figure 16.2b)
allows all of Dy, A and A\ to vary between components. The uncon-
strained model has the advantage that it is the most general model, but
has the disadvantage that the maximum number of parameters need to
be estimated, requiring relatively more data points in each component.
There is a range of elliptical models with other constraints, and hence
requiring fewer parameters.

6.2 Algorithm Outline

Assuming the number of clusters, G, is fixed, the model parameters
are estimated by the expectation maximization (EM) algorithm. In the
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EM algorithm, the expectation (E) steps and maximization (M) steps
alternate. In the E-step, the probability of each observation belong-
ing to each cluster is estimated conditionally on the current parameter
estimates. In the M-step, the model parameters are estimated given
the current group membership probabilities. When the EM algorithm
converges, each observation is assigned to the group with the maxi-
mum conditional probability. The EM algorithm can be initialized with
model-based hierarchical clustering (Dasgupta and Raftery, 1998), (Fra-
ley and Raftery, 1998), in which a maximum-likelihood pair of clusters
is chosen for merging in each step.

6.3 Model selection

Each combination of a different specification of the covariance matri-
ces and a different number of clusters corresponds to a separate prob-
ability model. Hence, the probabilistic framework of model-based clus-
tering allows the issues of choosing the best clustering algorithm and the
correct number of clusters to be reduced simultaneously to a model se-
lection problem. This is important because there is a trade-off between
probability model, and number of clusters. For example, if one uses a
complex model, a small number of clusters may suffice, whereas if one
uses a simple model, one may need a larger number of clusters to fit the
data adequately.

Let D be the observed data, and M} be a model with parameter
0r. The Bayesian Information Criterion (BIC) (Schwarz, 1978) is an
approximation to the probability that data D is observed given that the
underlying model is My, p(D|Mjy).

21log p(D|M},) ~ 2log p(D |6y, M) — v log(n) = BIC) (16.4)

where v is the number of parameters to be estimated in model My, and
0, is the maximum likelihood estimate for parameter 6. Intuitively, the
first term in Equation 16.4, which is the maximized mixture likelihood
for the model, rewards a model that fits the data well, and the second
term discourages overfitting by penalizing models with more free param-
eters. A large BIC score indicates strong evidence for the corresponding
model. Hence, the BIC score can be used to compare different models.

6.4 Implementation

Typically, different models of the model-based clustering algorithm
are applied to a data set over a range of numbers of clusters. The BIC
scores for the clustering results are computed for each of the models.
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Figure 16.3. Adjusted Rand indices for the standardized yeast cell cycle data.

The model and the number of clusters with the maximum BIC score are
usually chosen for the data.

These model-based clustering and model selection algorithms (includ-
ing various spherical and elliptical models) are implemented in McCLUST
(Fraley and Raftery, 1998). MCLUST is written in Fortran with interfaces
to Splus and R. It is publicly available at
http://www.stat.washington.edu/fraley/mclust.

7. A Case Study

We applied some of the methods described in this chapter to the
yeast cell cycle data (Cho et al., 1998), which showed the fluctuation
of expression levels of approximately 6000 genes over two cell cycles (17
time points). We used a subset of this data which consists of 384 genes
whose expression levels peak at different time points corresponding to
the five phases of cell cycle (Cho et al., 1998). We expect clustering
results to approximate this five class partition. Hence, the five phases
of cell cycle form the external criterion of this data set.

Before any clustering algorithm is applied, the data is pre-processed
by standardization, i.e., the expression vectors are standardized to have
mean 0 and standard deviation 1 (by subtracting the mean of each row
in the data, and then dividing by the standard deviation of the row).
Data pre-processing techniques are discussed in detail in Chapter 2.

We applied CAST, PAM, hierarchical average-link and the model-
based approach to the standardized yeast cell cycle data to obtain 2 to 16
clusters. The clustering results are evaluated by comparing to the exter-
nal criterion of the 5 phases of cell cycle, and the adjusted Rand indices
are computed. The results are illustrated in Figure 16.3. A high adjust-
ed Rand index means high agreement to the 5-phase external criterion.
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Figure 16.4. A silhouette plot of 5 clusters from PAM on the cell cycle data.

The results from three different models from the model-based approach
are shown in Figure 16.3: the equal volume spherical model (denoted
by EI), the unequal volume spherical model (denoted by VI), and the
unconstrained model (denoted by VVV). The equal volume spherical
model (EI) and CAST achieved the highest adjusted Rand indices at 5
clusters. Figure 16.4 shows a silhouette plot of the 5 clusters produced
using PAM. Three of the five clusters show higher silhouette values than
the other two, and hence, they are relatively more pronounced clusters.
In each cluster, there are a few genes with very low silhoutte values, and
they represent outliers in the clusters.

Notes

1. A probability distribution is a mathematical function which describes the probability
of possible events.

2. A multivariate normal distribution is a generalization of the normal distribution to
more than one variables.

3. The variance of an experiment is the average of the squared deviation of the experiment
from its mean, while the covariance of two experiments measures their tendency to vary
together.

4. Only the parameter A needs to be estimated to specify the covariance matrix for the
equal volume spherical model.
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