
Maps with Expensive Keys

Andrei Alexandrescu

December 1, 2005

1 What’s In a Symbol Name?

Well, I’ll tell you what it is. A lot of embarrassment,
that’s what it is—particularly if the name happens to
be a poorly chosen symbol name. If you’re thinking
of some foul word left in my source code and found
by a scrutinizing colleague months later, you’re mis-
taken. (I always use Romanian interjections when
I need a “variable name that’s impossible to occur
in normal source code,” so I’m covered there). The
name I’m talking about is an innocuous A, and the
opportunity for embarrassment showed itself right in
front of some eigthty people anxiously waiting to ex-
plain myself. The A was staring at me from my own
slides during my second talk at C++ Connections,1

and the context was (paraphrased):

void* Alloc(Heap & h, size_t s) {
return h.AllocImpl(
(s + ((1 << A) - 1)) & ~A);

}

I’d felt good about myself while writing that code,
good feeling that—just like Proust’s madeleines [4]—
came from back in time to make me smile jovially
while I pulled the slide and asked the audience, “now,
what does that expression do?” At that moment,
someone asked, “what’s A?” and the audience chuck-
led and looked at me waiting for a response.

Now, I believe all of us have had one moment when
we entered a room and totally forgot why. (Judging
by the way dogs enter rooms, they always forget.)
Well, imagine how it’s like to have such a moment in
front of a large audience waiting for you to explain
yourself in a foreign language. I don’t know what you

1http://devconnections.com/shows/cppfall2005/

default.asp?s=67

would do, and hopefully you’ll never need to know.
As of me, I stared at the expression for an eternity
that lasted fifteen seconds, until a good soul told me
“ah, doesn’t matter, let’s move on.” Some highlights
of the rest of the talk were red ears, a thickened ac-
cent, and a general sense of awkwardness. Sigh.

If only A had a better name, it would have revealed
the bug that’s lurking in the code above. You see, A
stands for “Alignment,” and the intent is to round
up s to the closest alignment. The problem is, the
use of A in the shift implies that it’s given in bits
(e.g., “align to clear the last A bits”), while A’s use in
the logical operation suggests that A is given in bytes
(e.g., “align to a multiple of A”). An appropriate
name would have worked wonders towards clarifying
the intent and fixing the bug:

const unsigned AlignBytes = 1 << AlignBits;
void* Alloc(Heap & h, size_t s) {
return h.AllocImpl(
(s + AlignBytes - 1) & ~(AlignBytes - 1));

}

That talk was my second worst ever, second only to
my attempt at selling policy-based design to a crowd
of Smalltalk aficionados. On the bright side, the
conference was very enjoyable, with a strong C++
track, within which the prima donna was concurrent
programming. In many people’s opinion, concurrent
programming will be the next dominating paradigm.
But, let’s leave that topic for later and turn our at-
tention towards a flaw in std::map.

1



2 Mailcontainer

But before that, let me bring up a letter that you
might find interesting. Andrew Boothroyd writes
about mandatory error codes [3]:

We have successfully used this idea in
our development. We do have a couple of
minor questions, however:

• Was there a deliberate reason that you
didn’t declare an assignment opera-
tor? Presumably, assigning from an
ErrorCode<T> means reading it in the
same way as copying it does, thus the
assignment operator should mirror the
behavior of the copy ctor?

• In your opinion, would prefixing the
explicit keyword to the template ctor
make client code (a) more or less read-
able; (b) more or less robust?

My personal view is that forcing the
client to call the ctor explicitly makes it
clear in the client code that an instance of
ErrorCode<T> is not being constructed by
another mechanism, e.g. type conversion, or
a method of the type from which the con-
version is being made.

Thanks for sharing. To answer the ques-
tions, it does make sense to implement
ErrorCode<T>::operator=(ErrorCode<T>) with
destructive semantics (also notice the unusual
signature). About making ErrorCode<T>’s construc-
tor explicit, I myself, after recently scrambling
through a number of shell and scripting languages,
have become increasingly inamored with the “make
the default safe, allow unsafe expressiveness with
extra syntax” mantra. I remain, however, ambivalent
about making the constructor explicit—it risks of
cluttering client code too much.

3 Maps with Expensive Keys

One nice thing about the STL containers is that they
are extension-friendly—you can easily use them as a

back-end for your own, more sophisticated, contain-
ers. Care for checked iterators? You don’t need to
start from scratch—you can use STL’s original con-
tainers for storage and build on top of them. Want
an always-sorted binary vector? You implement it as
a thin shell over std::vector (that’s exactly what
Loki::AssocVector does). Dictionaries, factories,
caches? std::map is there to help, either directly
or as a time-saving implementation device.

I was, therefore, more than a bit surprised when
stumbling upon a problem that has std::map writ-
ten all over it, yet can’t be solved with the help of
an std::map in any reasonable way. This article dis-
cusses that situation and some possible remedies.

Let’s start with two examples. The simplest would
involve the often-used map<string, something>:
user names and user IDs, stock tickers and stock
prices, class names and pointers to functions, words
in Proust’s opera and their counts. . . You can easily
access the “something” if you have a key in the de-
sired format. The problem is, you might have the
key in a different format that would require a con-
version. What if, for example, in your high-speed,
high-availability, power-hungry, bonus-bringing stock
market program, you have securities data come down
the wire in raw char* format, but you’d need to look
it up in a map<string, double>?

void OnWirePacket( // called a lot

const char* sec, // security name

void* secInfo) { // raw info

// Creates an implicit temporary string

const double price = map[sec];
...

}

You’d have to create a string from the char*
(which could trigger a call all the way to the mem-
ory allocator), look it up in the map, and then likely
throw it away. Employing a custom string and the
small string optimization [1] would be an option, but
in general securities come in a longer and more so-
phisticated format than the up-to-four-letters ticker
symbols we all know (and love—as long, of course,
as the stock market is bullish enough to let us mis-
take our naive elucubrations for insights of financial
genius).

2



One other solution would be to store stock data
as map<const char*, double>, but out the window
are automatic memory management and other com-
forting amenities that true strings offer or at least
strive chaotically to offer, as std::string seems to
do. Ahem.

The second example is a real-world problem that
inspired this article involves neural networks and
memoizing. Simply put, a neural network is a func-
tion that takes vectors of number and returns vectors
to numbers:

class NeuralNet {
...
void Fun( // NNs are fun

const int * inputs,
unsigned int inpCount,
double * outputs
unsigned int outCount);

};

(In the general case, the inputs could be floating
numbers and/or the outputs could be integers.) Some
neural networks learn as they go—are adaptive, in the
sense that the output for the same input might vary
across calls. But many usage scenarios of neural net-
works follow a “train once, use anywhere” mantra.
You “train” a neural network to learn a specific func-
tion (one that would be prohibitively hard, or pro-
hibitively expensive, to implement analytically) and
then you use that neural network many times with-
out ever changing its state. This setup has the con-
sequence that the output of a trained neural network
depends solely on its inputs. As far as efficiency goes,
just computing the output pattern on an already-
trained net involves quite expensive matrix multipli-
cations and nonlinear math functions (such as expo-
nentials) which aren’t cheap.

Now let’s assume that we have a problem in which
input patterns tend to be quite repetitive, that is, the
inputs of NeuralFun tend to not vary wildly within a
time window. (That is the case for most signals and
patterns. The real world is not jerky. Columnists
sometimes are.) For such an input, instead of com-
puting the output every time, it makes much sense
to compute the output once and then save it. Then,
if we detect the same input pattern occurs, we serve

the stored response and we’re done—no matrix mul-
tiplication, no exponentials, no nothing. This simple
technique is known as memoization. (“To memoize”
is also what managers inflict on programmers who
didn’t fill their TPS reports in time.)

Implementing a memoization scheme
would naturally involve something like a
map<vector<unsigned>, vector<double>, comp>.
The comparison predicate would implement classic
lexicographical comparison of two vectors:

struct MyLess {
bool operator()(

const vector<unsigned>& lhs,
const vector<unsigned>& rhs) const {

const unsigned

*li = &*lhs.begin(),
*ri = &*rhs.begin(),
*const le = &*lhs.end(),
*const re = &*rhs.end();

for (; ; ++li, ++ri) {
if (ri == re) return false;
if (li == le) return true;
if (*li != *ri) break;

}
return *li < *ri;

}
};

The problem is, most of the time, input data
doesn’t come in the form of vectors, but instead as
some pointer in a buffer that’s been read from a file.
Copying that buffer into yet another vector just for
the sake of looking it up in the cache sounds much
like selling apples just to buy pears. There’s a more
general problem lurking behind these examples.

4 Formalization

Let’s formalize the problem a bit. Con-
sider a class K (key), a class V (value), and
a predicate Less. The predicate supports
operator()(const K&, const K&). With this
troika we can build an std::map. Now, let’s say we
have some alternate key types K1, K2,. . . Kn that sat-
isfy, for all i from 1 to n, the following two conditions:

3



• Constructing an object of type K from an object
of type Ki is possible but not desirable for effi-
ciency reasons; and

• Ki is directly comparable with K. That means
you can implement a functor Less_i with the
same semantics as Less, just without the tem-
porary. To make things clear at the price of a
yawn on your part: For every object less of type
Less there is an object less_i of type Less_i
such that the relationship:

less_i(ki, k) == less(K(ki), k) &&
less_i(k, ki) == less(k, K(ki))

is true for all ki and k. Whew!

The charge is to implement a map that holds keys
of type K (just like map), yet accepts for comparison
alternate keys of type Ki without converting them to
K.

Unfortunately, we need to dismiss std::map right
off the bat. In spite of its considerable versatility,
std::map is unable to serve as a back-end for our
implementation. This is because all of std::map’s
searching functions (such as find, lower_bound, and
operator[]) require a const K&. By the rule of call-
by-value, std::map needs an object of type K to even
consider it for lookup. (We shall discuss later what
changes to std::map’s interface might be useful for
it to accept alternate key types.)

To give an example, consider K to be std::string
and Less to be std::less<std::string>. Then,
we can easily show that const char* (denot-
ing zero-terminated strings) is an alternate key
type. The proof is by construction—we implement
LessAsciiZString as follows:

struct LessAsciiZString {
bool operator()(

const char* k1,
const string& k2) const {

return strcmp(k1, k2.c_str()) < 0;
}
bool operator()(

const string& k1,
const char* k2) const {

return strcmp(k1.c_str(), k2) < 0;

}
};

Have a const char * and a length instead of a
null-terminated C-style string? We can readily define
another alternate key type and comparitor:

typedef std::pair<const char*, const char*>
MemRange;

struct LessMemRangeString {
bool operator()(

const MemRange k1,
const string& k2) const {

return std::lexicographical_compare(
k1.first, k1.second,
k2.begin(), k2.end());

}
bool operator()(

const string& k1,
const MemRange k2) const {

return std::lexicographical_compare(
k1.begin(), k1.end(),
k2.first, k2.second);

}
};

5 Design

Now, how to design such a map accepting alternate
key types and implicitly alternate predicate functors?
A number of design options spring to mind. One
would be to have the map accept an unbounded num-
ber of comparitors in the form of a typelist [2]:

template <
class K,
class V,
class TList = TYPELIST_1(std::less<K>)

>
class UberMap;

Such a design is viable and has certain
advantages—it’s easy to assemble a Map when you al-
ready have the comparitors lying around. For exam-
ple, should you want to define a map that accepts not
only std::string, but also zero-terminated strings
and memory ranges, you’d write:

4



typedef UberMap<
std::string,
Something,
TYPELIST_3(
std::less<std::string>,
LessAsciiZString,
LessMemRangeString

)
>
FastMap;

However, there’s an even better possible design.
How about collapsing all of the comparison predicates
into one? Consider:

typedef std::pair<const char*, const char*>
MemRange;

struct UberPred : std::less<string> {
using std::less<string>::operator();
bool operator()(

const char* k1,
const string& k2) const {

...
}
bool operator()(

const string& k1,
const char* k2) const {

...
}
bool operator()(

const MemRange k1,
const string& k2) const {

...
}
bool operator()(

const string& k1,
const MemRange k2) const {

...
}

};

The UberPred class collects all of the predicates
under one roof. UberPred also inherits the primary
key type and injects its operator() through the
using directive to give it a fighting chance. Then,
we let overloading will easily take care of everything.
To effect that, we implement UberMap as follows:

template <
class K,
class V,
class Compare = std::less<K>

>
class UberMap {
Compare pred_; // well, subject to EBO

...
public:
template <class Kx>
iterator find(const Kx& kx) {
// Implement in terms of calls

// to pred_(kx, something)

// and pred_(something, kx)

}
...

};

The design comprising all of the comparitors has
simplicity on its side—you just plug the appropriate
comparitor into a structure that otherwise is just like
std::map, and you’re done without any fuss, muss,
or any other unpleasantry ending in “uss”. The de-
sign also has the advantage of efficiency—the com-
piler generates one separate version of find for each
type you call find with. On the downside, if you have
a few predicates lying around, then. . . “some assem-
bly required,” as it reads on those impossible-to-put-
together pieces of furniture. But fear not, with just a
little handiwork you can assemble simple predicates
into larger predicates quite easily:

struct UberPred
: std::less<string>
, LessAsciiZString
, LessMemRangeString {

using std::less<string>::operator();
using LessAsciiZString::operator();
using LessMemRangeString::operator();

};

6 Implementation

I bet you are starting this section hoping that I
sat down and wrote a custom red-black tree im-
plementation. Sorry, I didn’t. But let’s focus

5



our attention on implementing UberMap by hack-
ing into Loki::AssocVector (which can be down-
loaded from http://sf.net/projects/loki-lib).
Loki::AssocVector is a std::map-lookalike that
uses a sorted vector for storage. Such a choice has
the advantage of fast binary searches but slow inser-
tions and removals. (Also, iterators are invalidated
during insertions and removals, which doesn’t hap-
pen with std::map’s node-based storage.)

You can download an implementation of
AssocVector with secondary key types from
http://erdani.org/code. The crux of the changes
is in the implementation of lower_bound, which in
turn helps in implementing find. Here it is:

// AssocVector With Alternate Keys

template<
class K,
class V,
class C = std::less<K>,
class A =
std::allocator< std::pair<K, V> >

>
class AssocVectorWAK {
...

public:
iterator lower_bound(const key_type& k) {
MyCompare& me = *this;
iterator left = begin(), right = end();
while (left < right) {
iterator i = left + (right - left) / 2;
if (me(k, *i)) right = i;
else if (me(*i, k)) left = i + 1;

}
return left;

}
};

The lower_bound implementation is as unexcit-
ing an implementation of a binary search as it
gets. The only reason for which we can’t use
std::lower_bound is that, at least in theory, that
implementation might not work properly; a predi-
cate with multiple overloads of operator() is not
acceptable by the letter of the standard.

7 Conclusion

It is surprising that in spite of its versatility,
std::map cannot efficiently accomodate keys of al-
ternate type. One possible solution would be
to extend std::map’s interface with two addi-
tional functions, iterator left(iterator) and
iterator right(iterator). These functions would
return iterators pointing to the lesser and greater sub-
trees, respectively. You see, std::map’s iterators live
in a two-dimensional world (the landscape of the tree
they span), but only offer the unidimensional inter-
face that conforms to bidirectional iterators. Unifor-
mity is good, but then Procrustes was into unifor-
mity, too. A map iterator should be different ba-
cause it is different—it can instantly jump across the
tree that’s essential to implementing custom searches
through the map. As things stand now, you’d have to
reimplement your map from scratch, live with ineffi-
cient searches, or use the Loki::AssocVector palia-
tiv. But whatever you do, please, please, always find
informative names for your symbols.

References

[1] Andrei Alexandrescu. Generic〈Programming〉:
A Policy-Based basic_string Implementation.
C++ Experts Online, June 2001. Avail-
able at http://erdani.org/publications/
cuj-06-2001.html.

[2] Andrei Alexandrescu. Modern C++ Design.
Addison-Wesley Longman, 2001.

[3] Andrei Alexandrescu. Generic〈Programming〉:
Three µIdeas. C++ Users Journal, February
2005.

[4] Marcel Proust. Remembrance of Things Past.
Penguin Classics, 1998. You can find the famous
madeleines fragment at http://www.haverford.
edu/psych/ddavis/p109g/proust.html.

6


