
Chapter 9

Motion from 2D Image

Sequences

A changing scene may be observed via a sequence of images. One might learn a golf swing by

observing the motions of an expert with a video camera, or better understand root growth

by observing the root using many images taken hours apart. Action phenomena observed

over time can be due to the motion of objects or the observer or both. Changes in an im-

age sequence provide features for detecting objects that are moving or for computing their

trajectories. In case the viewer is moving through a relatively static world, image changes

allow for computing the motion of the viewer in the world.

Similarly changing pixels in an image provide an important feature for object detection

and recognition. Motion can reveal the shape of an object as well as other characteristics,

such as speed or function. Analysis of object motion over time may be the ultimate goal, for

instance in controlling tra�c
ow or in analyzing the gait of a person with a new prosthesis.

Today, a huge amount of videos are made to record events and structure of the world. It is

necessary to have methods of segmenting these image sequences into meaningful events or

scenes for easy access, analysis or editing.

This chapter concentrates on detection of motion from 2D images and video sequences

and the image analysis used to extract features. Methods for solution of the above applicaton

problems are discussed. Analysis of 3D structure and motion derived from 2D images is

discussed in Chapter 13.

9.1 Motion Phenomena and Applications

It is useful to consider the various cases of motion observable in an image sequence and

the several important related applications. The problems to be solved range from mere

detection of a moving object to analyzing the related motion and shape of multiple moving

objects.

We identify the following four general cases of motion. We use the term camera to be

interchangable with the term observer.

1

2 Computer Vision: Mar 2000

� still camera, single moving object, constant background

� still camera, several moving objects, constant background

� moving camera, relatively constant scene

� moving camera, several moving objects

Figure 9.1: (Left) A person appears in a formerly unoccupied workspace. (Center) Image

substraction reveals changed regions where the person occludes the background and at the

door and a CRT. (Right) The change due to the person is deemed signi�cant while the other

two are expected and hence ignored. (Images courtesy of S.-W. Chen.)

The simplest case occurs when a still sensor stares at a relatively constant background.

Objects moving across that background will result in changes to the image pixels associated

with the object. Detection of these pixels can reveal the shape of the object as well as its

speed and path. Such sensors are commonly used for safety and security. It is common for

homes to use such sensors to automatically switch on a light upon detection of signi�cant

motion, which might be due to the owner coming home or to an unwelcome intruder. These

simple motion sensors can also be used in manufacturing to detect the presence of a part

fed into a workspace or in tra�c control systems that detect moving vehicles.

A staring camera can also provide data for analysis of the movements of one or several

objects. Moving objects must be tracked over time to produce a trajectory or path, which in

turn can reveal the behavior of the object. For example, a camera might be used to analyze

the behavior of people who enter the lobby of some business or who use some workspace.

Several cameras can be used to produce di�erent views of the same object, thus enabling

the computation of paths in 3D. This is often done in the analysis of the motion of athletes

or patients in rehabilitation. A system currently under development tracks the players and

ball in a tennis match and provides an analysis of the elements of the game.

A moving camera creates image change due to its own motion, even if the 3D environ-

ment is unchanging. This motion has several uses. First, it may create more observations of

the environment than available from a single viewpoint | this is the case when a panning

camera is used to provide a wider (panoramic) view of the scene. Secondly, it can provide

for computation of relative depth of objects since the images of close objects change faster

than the images of remote objects. Third, it can provide for perception/measurement of the

3D shape of nearby objects | the multiple viewpoints allow for a triangulating computa-

tion similar to binocular stereo. In processing or analyzing video or �lm content, it is often

Shapiro and Stockman 3

important to detect points in time when the camera is panned or zoomed: in this case, we

may not be interested in the contents of the scene but rather in the manner in which the

scene was viewed.

The most di�cult motion problems involve moving sensors and scenes containing so

many moving objects that it is di�cult to identify any constant background. Such a case

arises with a robot vehicle navigating through heavy tra�c. Another interesting case might

be using several communicating cameras to make correspondences in their observations in

order to track several moving objects in the workspace.

The sections below examine various image analysis methods that analyze a sequence

of two or more images in order to detect changes due to motion or to analyze the objects

themselves or their motion.

Exercise 1
Locate a motion detector in your neighborhood that is used to switch on a light. These

devices are commonly used near a garage or house entry. Verify that quickly entering the

area switches on a light. (a) Experiment by walking very slowly. Can you fool the motion

detector into missing you? (b) What does this experiment tell you about how the motion

detector works? (c) How does this relate to the tyrannosaurus rex in the movie Jurasic

Park?

9.2 Image Subtraction

Image subtraction was introduced in Chapter 1 as a means of detecting an object moving

across a constant background. Suppose a video camera provides 30 frames per second of a

conveyor belt that creates a uniform dark background. As brighter objects move across the

camera view, the forward and rear edges of the object advance only a few pixels per frame.

By subtracting the image It from the previous image It�1, these edges should be evident as

the only pixels signi�cantly di�erent from 0.

Figure 9.1 shows the results of di�erencing over an interval of a few seconds for the pur-

pose of monitoring a workspace (surveillance). A background image, which is nonuniform in

this case, is derived from many video frames. A person who enters the workspace changes a

region of the image, which can be detected by image subtraction as shown in Figure 9.1. The

bounding box delimits a rectangular region where the change is detected. Further analysis

of this bounding box might reveal object shape and even object type. The center image of

Figure 9.1 actually shows three separate regions of change corresponding to (1) the person,

(2) the door that the person opened, and (3) a computer monitor. A surveillance system

may be provided the knowledge of the location of such objects and might even be primed to

observe them or to ignore them. For example, the door might be carefully monitored while

the CRTs are ignored. Related applications include monitoring and inventory of parking

lots and monitoring the
ow of vehicles on streets or people in rooms.

A sketch of the steps in change detection via image subtraction is given as Algorithm 1.

Steps of this algorithm are operations given in Chapter 3.

4 Computer Vision: Mar 2000

Detect changes between two images

Input It[r; c] and It��[r; c]: two monochrome input images taken � seconds apart.

Input � is an intensity threshold.

Iout[r; c] is the binary output image; B is a set of bounding boxes.

1. For all pixels [r,c] in the input images,

set Iout[r; c] = 1 if (jIt[r; c] � It��[r; c]j > �)

set Iout[r; c] = 0 otherwise.

2. Perform connected components extraction on Iout.

3. Remove small regions assuming they are noise.

4. Perform a closing of Iout using a small disk to fuse neighboring regions.

5. Compute the bounding boxes of all remaining regions of changed pixels.

6. Return Iout[r; c] and the bounding boxes B of regions of changed pixels.

Algorithm 1: Detection of change via image subtraction

Exercise 2
This exercise requires a workstation with an attached camera and a software to access the

frames from the camera. Write a program that monitors the top of your desk (next to the

workstation). The program should successively acquire frames, compute a histogram for

each, and sound an alarm whenever there is a signi�cant change in the histogram. Test

your program on various still scenes and by moving various objects on and o� the desk.

Shapiro and Stockman 5

9.3 Computing Motion Vectors

Motion of 3D scene points results in motion of the image points to which they project.

Figure 9.2 shows three typical cases. Zooming out can be performed by reducing the focal

length of a still camera or by backing away from the scene while keeping the focal length

�xed. The optical axis points toward a scene point whose image does not move: this is

the focus of contraction. Zooming in is performed by increasing the focal length of a still

camera or by moving toward a particular scene point whose image does not change (focus

of expansion). Panning a camera or turning our heads causes the images of the 3D scene

points to translate, as shown at the right in Figure 9.2.

Zoom inZoom out Pan Right to Left

Figure 9.2: E�ects of zooming and panning on imaged features. The e�ect of zoom in is

similar to that observed when we move forward in a scene and the e�ect of panning is similar

to that observed when we turn.

1 Definition A 2D array of 2D vectors representing the motion of 3D scene points (as

shown in Figure 9.2) is called the motion �eld. The motion vectors in the image represent

the displacements of the images of moving 3D points. Each motion vector might be formed

with its tail at an imaged 3D point at time t and its head at the image of that same 3D point

imaged at time t+�. Alternatively, each motion vector might correspond to an instantaneous

velocity estimate at time t.

2 Definition The focus of expansion (FOE) is that image point from which all motion

�eld vectors diverge. The FOE is typically the image of a 3D scene point toward which the

sensor is moving. The focus of contraction (FOC) is that image point toward which

all motion vectors converge, and is typically the image of a 3D scene point from which the

sensor is receding.

Computation of the motion �eld can support both the recognition of objects and an

analysis of their motion. One of two, not too constraining, assumptions is usually made in

order to compute motion vectors. First, we can assume that the intensity of a 3D scene point

P and that of its neighbors remain nearly constant during the time interval (t1; t2) over

which the motion estimate for P is made. Alternatively, we can assume that the intensity

di�erences observed along the images of the edges of objects are nearly constant during the

time interval (t1; t2).

3 Definition Image
ow is the motion �eld computed under the assumption that image

intensity near corresponding points is relately constant.

6 Computer Vision: Mar 2000

Two methods for computing image
ow are given below. Before developing these we

describe a video game application that uses motion �elds.

9.3.1 The Decathete Game

Researchers at MERL (Mitsubishi Electronic Research Laboratory) in Cambridge, Mas-

sachusetts have reported results of using motion analysis to control the Sega Saturn Decath-

lete game. They replaced key pressing with image
ow computations from a low resolution

camera. The actual motion of the player of the game was used to control the motion of

the player's avatar in the simulation. In the example shown here, the avatar is running the

hurdles against another simulated runner. In Figure 9.3 the man at the left is the player

and is making running motions with his arms and hands. The faster the motions, the faster

his avatar runs. The avatar must also jump the hurdles at the proper instants of time:

the player \jumps" by raising both �sts upward. The Decathlete display is shown on the

monitor at the right in Figure 9.3. In the lower right corner of that �gure, one can see the

video camera that observes the motion of the player. The two persons in the middle of the

picture are watching the fun.

Figure 9.3: The man at the left is making running motions with his arms and hands to

control the game of running the hurdles. The game display is shown at the right. In

the lower right corner, a video camera observes the motion of the player, which is used

to control the running speed and jumping of the hurdling avatar. Reprinted from IEEE

Computer Graphics, Vol 18, No. 3 (May-June 1998) by permission of IEEE.

Figure 9.4 illustrates the motion analysis used to control the hurdling game. Figure 9.4(a)

gives a snapshot of the motion analysis, while Figure 9.4(b) provides an explanatory map

of the content of (a). Note that the top left of (a) shows a video frame of the \running"

player seen by the camera, while the middle left of (a) shows motion vectors extracted from

multiple frames. The jumping pattern is indicated by the vertical motion plot shown in the

Shapiro and Stockman 7

artificial
retina
image

optical
flow
field vertical flow

history

horizontal
flow

 history

decath. event

decath. event

decath. event

decath. event

decath. event

decath. event

decath. event

decath. event

Figure 9.4: Ilustration of the motion analysis used to control the hurdling game. The top

left of shows a video frame of the \running" player, while the middle left shows motion

vectors extracted from multiple frames. The jumping of the hurdles is indicated by the

vertical motion plot shown in the middle. (Reprinted from IEEE Computer Graphics, Vol

18, No. 3 (May-June 1998) with permission of IEEE.)

(b) (c)(a)

Figure 9.5: Motion vectors for (a) running, (b) jumping up and (c) coming down.

middle of (a). Figure 9.5 shows the pattern of motion vectors used to control running and

jumping. The camera must be set up to view the player's two hands as the player \runs" and

\jumps". As shown in Figure 9.5(a), a running motion results in opposing motion vectors

in the two vertical halves of the frame. When both motion vectors are upward, a jump is

indicated as shown in part (b) of the �gure. The motion vectors in Figure 9.5 summarize

the image
ow in terms meaningful to the application. The spatial resolution is very low

but the temporal resolution is high.

The type of coarse motion analysis used in the decathalon game might provide a general

gesture interface to computers. For example, future computers might provide for input using

American Sign Language (ASL) or some smaller gesture language.

9.3.2 Using Point Correspondences

A sparse motion �eld can be computed by identifying pairs of points that correspond in

two images taken at times t1 and t1 + �. The points we use must be distinguished in some

8 Computer Vision: Mar 2000

way so that they can be identi�ed and located in both images. Detecting corner points

or high interest points should work for both color and monochrome images. Alternatively,

centroids of persistent moving regions from segmented color images might be used. Corner

points can be detected by using masks such as the Kirsch edge operator or the ripple masks

of the Frie-Chen operator set (Chapter 5). Alternatively, an interest operator can be used.

The operator computes intensity variance in the vertical, horizontal, and diagonal directions

through the neighborhood centered at a pixel P. Only if the minimum of these four vari-

ances exceeds a threshold is P passed as an interesting point. These operations are sketched

in Algorithm 2. An alternative operator based on texture is developed in an exercise below.

Find interesting points of a given input image.

procedure detect corner points(I, V);

f
\I[r; c] is an input image of MaxRow rows and MaxCol columns"

\V is an output set of interesting points from I."

\� is a threshold on the interest operator output"

\w is the halfwidth of the neighborhood for the interest operator"

for r := 0 to MaxRow - 1

for c := 0 to MaxCol - 1

f
if I[r; c] is a border pixel then break;

else if (interest operator (I, r, c, w) � �1) then add [(r; c); (r; c)] to set V;

\The second (r, c) is a place holder in case vector tip found later."

g
g
real procedure interest operator (I, r, c, w)

f
\w is the halfwidth of operator window"

\See alternate texture-based interest operator in the exercises."

v1 := variance of intensity of horizontal pixels I1[r; c�w] : : :I1[r; c+w];

v2 := variance of intensity of vertical pixels I1[r�w; c] : : : I1[r+w; c];

v3 := variance of intensity of diagonal pixels I1[r�w; c�w] : : : I1[r+w; c+w];

v4 := variance of intensity of diagonal pixels I1[r�w; c+w] : : : I1[r+w; c�w];

return minimum fv1; v2; v3; v4g;
g

Algorithm 2: Algorithm for detecting interesting image points.

Once a set of interesting points fPjg is identi�ed in the image I1 taken at time t, corre-

sponding points must be identi�ed in the image I2 taken at time t+ �. Rather than extract

points from I2 in the same manner and then attempt to make correspondences, we can

directly search I2 to determine the new location of each point from I1. This can be done

by using the cross-correlation method described in Chapter 5. Given an interesting point

Pj from I1, we take its neighborhood in I1 and �nd the best correlating neighborhood in I2

Shapiro and Stockman 9

Exercise 3 Texture-based interest operator

Experiment with the following interest operator, which is based on the texture of an entire

nxn neighborhood. First, compute the gradient magnitude for the entire input image using

a 3x3 or 2x2 mask. Second, threshold the magnitude image to produce a binary image. A

pixel [r; c] in the original image is interesting only if there is signi�cant variation in each of

the four main directions in the nxn neighborhood of B[r; c] in the binary image. Variation

in direction [�r;�c] = [0; 1]; [1; 0]; [1;1]; [1;�1] is just the sum of B[r; c]
B[r+�r; c+�c]

for all pixels in the nxn neighborhood centered at B[r; c].
 is the exclusive or operator

that returns 1 if and only if the two inputs are di�erent. An \interest image" is formed

by assigning IN [r; c] the minimum of the four variations in B[r; c] computed as above. Try

your operator on a few monochrome images, including a checkboard.

head

(enlarged)

(Hx,Hy)

(Tx,Ty)
(Hx,Hy)

o
tail

motion vector

o

Image I1 Image I2

o (Tx,Ty)

search

rectangle

interesting point best matching neighborhood

Figure 9.6: For each interesting point (Tx;Ty) in image I1 a rectangular region of image

I2 is searched for the best match to a small neighborhood of (Tx;Ty). If the best match is

good, then it becomes the head (Hx;Hy) of a motion vector.

under the assumption that the amount of movement is limited. Figure 9.6 sketches how to

search frame I2 for a good match to the neighborhood of point Pj in frame I1. The center

Pk = [Pkr; Pkc] of the best correlating neighborhood in I2 is taken to be the corresponding

point and will become the tip of a motion vector with Pj = [Pjr; Pjc] being the tail. The

search for Pk is limited to a rectangular C x R region in image rows Pjr�R : : :Pjr+R and

image columns Pjc �C : : :Pjc+C. A small search region speeds up the search for a match

and also reduces ambiguity, but is only useful when there is a justi�able assumption on

the limit to the velocity of objects. The resulting algorithm is given below as Algorithm 3.

Results of applying this algorithm are shown in Figure 9.7. The test imagery way created

by moving three highly textured cutouts across a lightly textured background.

Algorithm 3 can be controlled to iterate through pairs of frames so that feature points

can be continuously tracked over many frames. The corner points identi�ed in frame t+� can

replace those formerly identi�ed in frame t and the new, possibly changed, neighborhoods

10 Computer Vision: Mar 2000

From two input images, derive motion vectors for interesting points.

I1[r; c] and I2[r; c] are input images of MaxRow rows and MaxCol columns.

V is the output set of motion vectors f[(Tx; Ty); (Hx;Hy)]ig
where (Tx; Ty) is the tail of a motion vector and (Hx;Hy) is its head.

procedure extract motion �eld(I1; I2;V)

f
\Detect matching corner points and returning motion vectors V"

\�2 is a threshold on neighborhood cross-correlation"

detect corner points(I1;V);

for all vectors [(Tx; Ty); (Ux; Uy)] in V

match := best match(I1; I2; Tx; Ty;Hx;Hy);

if (match < �2) then delete [(Tx; Ty); (Ux; Uy)] from V;

else replace [(Tx; Ty); (Ux; Uy)] with [(Tx; Ty); (Hx;Hy)] in V;

g
real procedure best match(I1; I2; Tx; Ty;Hx;Hy);

\(Hx;Hy) is returned as the center of the neighborhood in I2 that matches best"

\to the neighborhood centered at (Tx; Ty) in I1."

\sh and sw de�ne search rectangle: h and w de�ne neighborhood size."

f
\�rst indicate that a good match has not been found"

Hx := -1; Hy := -1; best := 0.0;

for r := Ty � sh to Ty + sh

for c := Tx � sw to Tx + sw

f
\cross correlate N in I1 with N in I2 as in Chapter 5"

match := cross correlate(I1 ; I2; Tx; Ty; r; c; h; w);

if (match > best) then

f
Hy := r; Hx := c; best := match;

g
g

g

Algorithm 3: Compute sparse set of motion vectors from a pair of input images.

Shapiro and Stockman 11

Figure 9.7: Results of applying Algorithm 3. At the right is the image at time t1. At the

left is the image at time t2 with the motion analysis overlaid. Red squares indicate the

location of the original neigborhoods detected by the interest operator in the image at the

right. Blue squares indicate the best matches to these neighborhoods in the image at the

left. There are three coherent sets of motion vectors (green lines) corresponding to the three

moving objects. Analysis courtesy of Adam Clark.

used for cross-correlation. In this manner, signi�cant points can be tracked in a dynamic

scene provided that their neighborhoods change in a gradual manner. In general, we must

also provide for the disappearance of corner points due to occlusion and the appearance of

new unoccluded corner points. These ideas are discussed under tracking below.

Exercise 4

Consider the image of a standard checkerboard. (a) Design a corner detector that will

respond only at the corners of four of the squares and not within squares or along the edges

between two squares. (b) Take several images by slowly moving a checkerboard in front

of a stationary camera. (c) Test your corner detector on these images and report on the

number of correct and incorrect detections in each of the images. (d) Implement and test

Algorithm 3 on several pairs of the images with a small amount of motion between them.

9.3.3 MPEG C Compression of Video

MPEG video compression uses complex operations to compress a video stream up to 200:1.

We note the similarity between MPEG motion compensation and Algorithm 3. The subgoal

of MPEG is not to compute a motion �eld but to compress the size of an image sequence

by predicting the content of some frames from other frames. It is not important that the

motion vectors be correct representations of moving objects, but only that they provide for

good approximations of one image neighborhood from another. An MPEG encoder replaces

an entire 16 x 16 image block in one frame with a motion vector de�ning how to locate the

best matching 16 x 16 block of intensities in some previous frame. Figure 9.8 illustrates

the use of motion estimation in the MPEG compression scheme. Details of the scheme are

given in the �gure caption. Distinguished image points are not used; instead a uniform

grid of blocks is used and a match of each block is sought by searching a previous image

12 Computer Vision: Mar 2000

F 2

F 1

F 3

F 4
I

B 1

B 2

P

b1

b2 b3

b4

b5

b6

b7

T I M E

Figure 9.8: A coarse view of the MPEG use of motion vectors to compress the

video sequence of four frames F1, F2, F3, F4. F1 is coded as an independent (I)

frame using the JPEG scheme for single still images. F4 is a P frame predicted from F1

using motion vectors together with block di�erences: 16 x 16 pixel blocks (b1) are located

in frame F1 using a motion vector and a block of di�erences to be added. Between frames

B1 and B2 are determined entirely by interpolation using motion vectors: 16 x 16 blocks

(b2) are reconstructed as an average of blocks (b4) in frame F1 and (b5) in frame F4.

Between frames F2 and F3 can only be decoded after predicted frame F4 has been decoded

even though these images were originally created before F4. Between frames yield the most

compression since each 16 x 16 pixel block is represented by only two motion vectors. I

frames yield the least compression.

of the video sequence. The �gure only shows how a few of the many blocks are computed.

Ideally, each block Bk of 16 x 16 pixels can be replaced by a single vector [Vx; Vy]k, which

the encoder found to locate the best block of matching intensities in a previous frame. If

there is a di�erence in the two intensity arrays, then this di�erence can be represented by a

small number of bits and transmitted also.

Although the MPEG motion vectors are designed for the purpose of compression and

not motion analysis, researchers have begun to experiment with using them for the purpose

of providing a motion �eld. The advantage is that MPEG encoders can now compute these

vectors in real time and they are already present in the video stream. Options in future

codecs may indeed provide useful motion �elds for motion analysis applications.

Exercise 5

Assume a video sequence of frames that each have 320 x 240 8-bit monochrome pixels. (a)

What is the representation output by an MPEG-type encoder for a between frame? (b)

How many bytes are needed for the representation? (c) What is the compression ratio for

the between frame relative to an original image?

Shapiro and Stockman 13

3333333333 3333333333
3333333333 3333333333
3333333333 3373333333
3373333333 3397533333
3397533333 3399753333
3399753333 3399975333
3399975333 3333333333
3333333333 3333333333

(a) t (b) t1 2

Figure 9.9: An example of image
ow. A brighter triangle moves one pixel upward from

time t1 to time t2. Background intensity is 3 while object intensity is 9.

9.3.4 * Computing Image Flow

Methods have been developed for estimating image
ow at all points of an image and not

just at interesting points. We study a classical method that combines spatial and temporal

gradients computed from at least two consecutive frames of imagery. Figure 9.9 shows an

ideal example of what a camera might observe when an object moves in its �eld of view. The

image (a) from time t1 shows a triangular object in the lower left corner, while (b) shows

that the triangle has moved upward by time t2. This simple example serves to illustrate

some of the assumptions that we will make to develop a mathematical model of image
ow.

� We assume that the object re
ectivity and the illumination of the object does not

change during the interval [t1; t2].

� We assume that the distances of the object from the camera or light sources does not

vary signi�cantly over this interval.

� We shall also assume that each small intensity neighborhood Nx;y at time t1 is observed

in some shifted position Nx+�x;y+�y .

These assumptions do not hold tight in real imagery, but in some cases they can lead

to useful computation of image
ow vectors. Having motivated the theory with a simple

discrete case, we now proceed with the development of the image
ow equation for the case

of a continuous intensity function f(x; y) of continuous spatial parameters.

Exercise 6

Refer to Figure 9.9. The intensity function is f(x; y; t). Consider the topmost pixel at time

t1 with intensity 7 within the context 9 7 5 (its spatial coordinates are x = y = 4). Estimate

the spatial derivatives of the image function @f=@x and @f=@y at x = y = 4; t = t1 using

a 3x3 neighborhood. Estimate the temporal derivative @f=@t at x = y = 4; t = t1: what

method is appropriate?

14 Computer Vision: Mar 2000

9.3.5 * The Image Flow Equation

Using the above assumptions, we now derive what is called the image
ow equation and

show how it can be used to compute image
ow vectors. Using the continuous model of the

intensity function f(x; y; t), we apply its Taylor series representation in a small neighborhood

of an arbitrary point (x; y; t).

f(x + �x; y + �y; t+ �t) = f(x; y; t) +
@f

@x
�x+

@f

@y
�y +

@f

@t
�t + h:o:t: (9.1)

Note that Equation 9.1 is a multivariable version of the very intuitive approximation for

the one variable case: f(x+ �x) � f(x) + f 0(x)�x. For small neighborhoods of (x; y; t) we

ignore the higher order terms h:o:t: of Equation 9.1 and work only with the linear terms.

Our next crucial step is illustrated in Figure 9.10. The image
ow vector V = [�x; �y]

for which we want to solve carries the intensity neighborhood N1 of (x; y) at time t1 to an

identical intensity neighborhood N2 of (x+�x; y+�y) at time t2. This assumptionmeans that

f(x+ �x; y + �y; t+ �t) = f(x; y; t) (9.2)

We obtain the image
ow equation by combining Equations 9.1 and 9.2 and ignoring

the higher order terms.

�@f

@t
�t =

@f

@x
�x+

@f

@y
�y = [

@f

@x
;
@f

@y
] � [�x; �y] = rf � [�x; �y] (9.3)

.
.V

2N

N1

t 1

t 2

P

P’

Figure 9.10: Due to motion in direction v, the intensities of neighborhood N1 at time t1 are

the same as the intensities of neighborhood N2 at time t2.

The image
ow equation does not give a unique solution for the
ow vector V, but im-

poses a linear constraint on it. In fact, there may be many neighborhoods N2 that have the

same intensities as N1. Figure 9.11 shows how multiple possibilities exist for the
ow vector

when restricted to a small neighborhood, or aperture, about point (x; y). Observing only

the small aperture about point P, it is possible that P moves to R or Q or some other point

along the segment QR. Figure 9.12 shows four di�erent edge cases from a square object.

In general, we may not have pronounced object edges; however, Figure 9.10 still applies to

Shapiro and Stockman 15

P
Q

R..
.

..

Figure 9.11: An intensity edge moves toward the right from time t1 to time t2. However, due

to the limited size of the neighborhood, or aperture, used for matching, the location of the

displaced point P could be R or Q or some other point along the edge segment determined

by them.

curved isobrightness contours. The edges shown in the picture would be the tangents to the

contour that approximate the contour locally.

We can interpret Figure 9.11 as follows. A change is observed at point P and can be

measured by �@f

@t
�t. This change equals the dot product of the spatial gradient rf and the

ow vector V. jVj can be as small as the perpendicular distance to the new edge location,

or it can be much larger in case the
ow vector is in a direction much di�erent from the

spatial gradient. The latter case would result when a rope being pulled very fast vertically

vibrates slightly horizontally resulting in small changes of image edge position over time.

9.3.6 * Solving for Image Flow by Propagating Constraints

The image
ow equation provides a constraint that can be applied at every pixel position.

By assuming coherence, neighboring pixels are constrained to have similar
ow vectors.

Figure 9.13 shows how neighboring constraints can be used to reduce the ambiguity in the

direction of motion. Figure 9.13(b) shows a blowup of the neighborhood of corner A of the

moving square shown in (a). The image
ow equation constrains the direction �x of motion

at point X to be in the interval between 5�=4 and �=4. The direction �y of motion at point

Y is constrained to the interval between ��=4 and 3�=4. If points X and Y are assumed to

be on the same rigid object, then the
ow vectors at X and Y are now constrained to the

intersection of these constraints, which is the interval ��=4 and �=4.

Figures 9.12 and 9.13 emphasize two points. First, only at the interesting corner points

can image
ow be safely computed using small apertures. Second, constraints on the
ow

vectors at the corners can be propagated down the edges; however, as Figure 9.13(c) shows,

it might take many iterations to reach an interpretation for edge points, such as P, that are

distant from any corner. Some experiments in
ow computations have been performed using

random pixel images. Our development shows that such images are probably easier than

highly structured images because neighborhoods are more likely to be unique. Relaxation

methods in 2D are studied in Chapter 11. Use of di�erential equations to solve for image

16 Computer Vision: Mar 2000

A

C C’

B B’

A’ D D’

Figure 9.12: A square object is moving toward the right. Motion vectors with their tails on

the edge at time t1 are constrained by a linear relationship that puts their heads on an edge

at time t2. Common constraints at the corners A,B,C,D force the move right interpretation,

which can then be propagated to all edge points by enforcing consistency along the entire

boundary.

ow can be found in the paper by Horn and Schunck (1981) cited in the references.

9.4 Computing the Paths of Moving Points

The previous sections discussed methods for identifying interesting points of a frame at time

t1 and for locating that same object point in a following frame at time t2 close in time to

t1. If the intensity neighborhood of each point is uniquely textured, then we should be able

to track the point over time using normalized cross correlation. Also, domain knowledge

might make it easy to track an object in an image sequence, as in the case of tracking an

orange tennis ball in a tennis match, or a pink face looking at a workstation.

We now consider a more general situation where moving points are not tagged with

unique texture or color information. In this case, the characteristics of the motion itself

must be used to collect points into trajectories. We mention three concrete problems before

considering the abstract general case. For one situation, consider a box of many tennis balls

dumped out on the ground: the problem is to compute the path of each ball from a video

sequence. In a second situation, we want to study
uid
ow through a chamber by mixing

uorescent particles with the
uid and observing their motion over time. We assume that

individual particles appear to be the same in an image. In a third case, we want to compute

the paths of people walking in a mall. Clothing may make the images of some people unique,

but surely there would be a high probability that some sets of individuals would have the

similar appearances in the images.

We can exploit the following general assumptions that hold for physical objects in 3D

space.

1. The location of a physical object changes smoothly over time.

2. The velocity of a physical object changes smoothly over time: this includes both its

speed and direction.

Shapiro and Stockman 17

A

B B’

C’

A’ A

C

P

(a) square object
 moving right

(b) blowup of
 corner A

(c) aperture problem is
 critical for elongated
 object

.

.

.

.

.
R

Q

Q’

R’

.

.
X

Y

Figure 9.13: (a) A square object moves right; (b) a blowup of corner A shows how the

constraints from two neighboring image
ow equations can reduce the ambiguity of direction

to �=2. (c) An extreme aperture problem: an elongated object moves in the direction of its

length; from the aperture around point P and its neighbors, the ambiguity in the direction

of motion is �.

3. An object can be at only one location in space at a given time.

4. Two objects cannot occupy the same location at the same time.

The �rst three assumptions above hold for the 2D projections of 3D space; smooth 3D

motion creates smooth 2D trajectories. The fourth assumption may be violated under pro-

jection, since one object might occlude another, and this will create problems for a single

observer. Experiments with humans have shown that humans can recognize objects and

analyze their motion when presented with many frames of the moving object points. In

a well known experiment by Johansson (1976), lights were a�xed to various points of a

human body. Observers of only the lights on a still person could not recognize that it was

a person; however, when the person moved, the observers could easily recognize that they

were seeing a person.

We now present an algorithm, developed by Sethi and Jain (1987), that uses the above

assumptions to compute a smoothest set of paths through points observed in a sequence of

frames. First, we give a mathematical de�nition for the smoothness of a single path. Second,

we de�ne the smoothest set of m paths as that set of paths with the optimal sum of the

m smoothness values. Finally, we de�ne the greedy exchange algorithm, which iteratively

extends the m paths from time t1 through time tn by making an optimal set of assignments

at each time instant.

4 Definition If an object i is observed at time instants t = 1; 2; : : : ; n, then the sequence

of image points Ti = (pi;1; pi;2; : : : ; pi;t; : : : ; pi;n) is called the trajectory of i.

Between any two points of a trajectory, we can de�ne their di�erence vector

18 Computer Vision: Mar 2000

1

3
5

6

1
2 3 4

6

1

2

3

4
56

4 5

2

Figure 9.14: Trajectories of three objects,
;4;� are shown: the location of each object is

shown for six instants of time.
 and 4 are generally moving from left to right while � is

moving right to left.

1

1
2

2

3

3
4

4

5

5

Figure 9.15: Trajectories of two objects,
 and � are shown along with the image
ow

vector at each of the �rst �ve points. A tracker would consider �2 as a likely successor to

1 and
5 to be a possible ending of the sequence �1;�2;�3;�4.

Shapiro and Stockman 19

. θ

V
p[i , t]

i, t

i, t-1
V.

.

Figure 9.16: Vectors entering and leaving trajectory point p[i; t].

Vi;t = pi;t+1 � pi;t (9.4)

We can de�ne a smoothness value at a trajectory point pi;t in terms of the di�erence of

vectors reaching and leaving that point. Smoothness of direction is measured by their dot

product, while smoothness of speed is measured by comparing the geometric mean of their

magnitudes to their average magnitude.

Si;t = w (
Vi;t�1 � Vi;t
jVi;t�1j jVi;tj) + (1�w) (

2
pjVi;t�1j jVi;tj
jVi;t�1j + jVi;tj) (9.5)

The weight w of the two factors is such that 0 � w � 1, which yields 0 � Si;t � 1 (See the

exercises.) Note that for a straight trajectory with equally spaced points all the di�erence

vectors are the same and Equation 9.5 yields 1.0, which is the optimal point smoothness

value. Change to direction or speed decreases the value of Si;t. We assume that m unique

points are extracted from each of the n frames, although we can relax this later. Points of

the �rst frame are labeled i = 1; 2; : : :;m. The problem is to construct the m trajectories

Ti with the minimum total smoothness value. Total smoothness is de�ned in Equation 9.6

as a sum of smoothness of all the interior points of all the m paths.

total smoothness Ts =

mX

i=1

n�1X

t=2

Si;t (9.6)

Exercise 7

Assume that w = 0:5 so that direction and speed are weighted equally. (a) Show that point

smoothness at each vertex of a regular hexagon with unit sides is 0.75. (b) What is the

point smoothness at the vertices of a square?

Algorithm 4 develops a set of m trajectories over n frames. It is not guaranteed to

produce the minimum possible Ts, but experiments have shown it to work well. First, we

intuitively examine some of its operations with reference to the simple example in Fig-

ure 9.15. Table 9.1 provides a record of the smoothness of some paths considered. We can

assign point labels arbitrarily in the �rst frame; for example, object �1 � 1 = T [1; 1] and

object
1 � 2 = T [2; 1]. The trajectories can then be extended to the nearest point in

20 Computer Vision: Mar 2000

Exercise 8

(a) Refer to the Cauchy-Schwartz inequality (Chapter 5) and show that the factor
Vi;t�1�Vi;t

jVi;t�1j jVi;tj
of Si;t is between 0 and 1. (b) Show that for two positive numbers x and y,

their geometric mean
p
xy never exceeds their arithmetic mean (x+ y)=2. Use this to show

that the factor
2
p
jVi;t�1j jVi;tj

jVi;t�1j + jVi;tj
is between 0 and 1. (c) Now show that Si;t in Equation 9.5

is between 0 and 1 provided that w is between 0 and 1.

Exercise 9
What is the total smoothness of these two paths: a 4-point trajectory along four sides of an

octagon with sides s and a 4-point trajectory along a square with sides s?

subsequent frames: T [1; 2] =
2, the closest point, and T [2; 2] = �2 by process of elimina-

tion. We have made a mistake by switching the actual trajectories. We compute the total

smoothness for these two paths after looking ahead to the nearest neighbor assignments

at time t = 3. From the �rst two rows of Table 9.1 we see that the total smoothness for

these two paths is 0:97 + 0:98 = 1:95. If the assignments T [1; 2] =
2 and T [2; 2] = �2 are

exchanged, a better smoothness value of 0:99+0:99 = 1:98 is achieved. After this exchange,

the two trajectories up to time t = 2 are (�1;�2) and (
1;
2). Nearest point initial assign-

ments will give the best smoothness values at times t = 3; 4 and no exchanges are needed.

However, at time t = 5 the nearest point assignments yield trajectories (�1;�2;�3;�4;
5)

and (
1;
2;
3;
4;�5). Computing total smoothness with these last two assignments

exchanged improves total smoothness from 2:84 + 2:91 = 5:75 to 2:89 + 2:94 = 5:83 over

the interior 3 trajectory points so the �nal result will be correct according to the labels in

Figure 9.15.

Algorithm 4 initializes m complete paths of n points each before it applies any smooth-

ness criteria. A variable number of exchange loops attempt to improve smoothness by ex-

changing points between two paths. If an improvement is made (and it's always the biggest

improvement) by an exchange at any time t, then the entire exchange loop is repeated.

In general, (
m

2
) possible exchanges must be considered at each frame t. The algorithm

requires at least (n�2)(m

2
) operations; more e�ort is required for any additional exchange

loops. Total smoothness cannot increase beyond the value 1:0m(t � 2) so the number of

times that it can increase is limited and the algorithm must terminate.

Given that the assignments at frame t = 1 are arbitrary, there are mn�1 possible paths

to consider overall | an exhorbitant number to evaluate. The Greedy Exchange Algorithm

does not consider exchanges of more than one pair of assignments at a time and hence

might not obtain a global minimum. Algorithm 4 may be modi�ed so that it is initialized

using only one or three frames and continues as each new frame is sensed and processed

for feature points. If all points of all frames are available, the algorithm can be improved

by using both forward and backward processing in the exchange loop. Also, the algorithm

has been extended to handle cases where points may appear or disappear between frames,

primarily due to occlusions of one moving object by another. Ghost points can be used to

represent points in frames containing fewer than m points.

Shapiro and Stockman 21

Input sets of 2D points over time and compute smooth paths.

P[i; t] holds i = 1; 2; : : : ;m 2D points from frames t = 1; 2; : : : ; n;

T[i; t] is the output set of trajectories of m rows and n columns.

T[i; t] = k means that object i is observed as the k-th point of frame t.

1. initialize: create m complete paths by linking nearest neighbors

(a) First frame: for all i, set object labels T[i;1] = i;

(b) Other frames: for t = 2; 3; : : : ; n, assign T [i; t] = k where point P[k,t] is the

nearest point to point P[T[i,t-1],t-1] which is not already assigned.

2. Exchange Loop: for t:=2 to n-1

(a) for all pairs (j,k) with j 6= k, compute the increase of smoothness due to

exchanging the assignments T [j; t] and T [k; t];

(b) make the exchange that produces the maximum increase in smoothness; make

no exchange if none would increase total smoothness;

(c) set the exchange
ag on only if an exchange was made;

3. Test Termination: If an exchange was made in the above loop, reset the exchange

ag to o� and repeat the exchange loop.

Algorithm 4: Greedy Exchange Algorithm

22 Computer Vision: Mar 2000

Table 9.1: Smoothness for paths of Figure 9.15.

t=1 t=2 t=3 t=4 t=5 smoothness

1(112 262) �2(206 185)
3(250 137) 0.97

�1(106 175)
2(180 188) �3(280 185) 0.98

1(112 262)
2(180 188)
3(250 137) 0.99

�1(106 175) �2(206 185) �3(280 185) 0.99

1(112 262)
2(180 188)
3(250 137)
4(360 137) 1.89

�1(106 175) �2(206 185) �3(280 185) �4(365 156) 1.96

1(112 262)
2(180 188)
3(250 137)
4(360 137) �5(482 80) 2.84

�1(106 175) �2(206 185) �3(280 185) �4(365 156)
5(478 170) 2.91

1(112 262)
2(180 188)
3(250 137)
4(360 137)
5(478 170) 2.89

�1(106 175) �2(206 185) �3(280 185) �4(365 156) �5(482 80) 2.94

Exercise 10
The following sets of three points were extracted from six frames of video and correspond

to the data shown in Figure 9.14. Identify the smoothest set of three trajectories according

to the Greedy Exchange Algorithm.

t=1 t=2 t=3 t=4 t=5 t=6

(483 270) (155 152) (237 137) (292 128) (383 117) (475 220)

(107 225) (420 237) (242 156) (358 125) (437 156) (108 108)

(110 133) (160 175) (370 180) (310 145) (234 112) (462 75)

Exercise 11
Would you expect the Greedy-Exchange Algorithm to succeed in constructing trajectories

from points in image sequences in the following cases? Explain why or why not. (a) The

video is of a rotating carrousel with wooden horses that move up and down. (b) The video

is of a street taken from the sidewalk: two cars pass just in front of the camera going 35

MPH in opposite directions. (c) High speed �lm is taken of the collison of two billiard balls.

The moving white ball hits a still red ball: after the collision, the white ball is still and the

red ball has taken all of its momentum.

9.4.1 Integrated Problem-Speci�c Tracking

Use of Algorithm 4 has demonstrated the power of using only the general constraints of

smoothness. In speci�c applications much more information might be available to increase

both the robustness and speed of tracking. If features are available for each of the m

points, then feature matching can be included in the smoothness computations. Going even

further, �tting of the current partial trajectory up to time t can be used to predict the

location of the next trajectory point in frame t + 1, which can greatly reduce the e�ort

Shapiro and Stockman 23

Figure 9.17: Tracking of the eyes and nose of a workstation user enables movement of the

cursor without using the mouse. (Top) Face pose determines selection in menu. (Bottom)

A sequence of face images showing tracking of the eyes and nose. (Images courtesy of Vera

Bakic.)

of cross-correlation used to �nd that point. Algorithms incorporating these methods can

be found in the recent research literature. Maes et al (1996) have tracked human motion

by computing the trajectories of the hands, feet, and head, which are identi�ed as high-

curvature protrusions from the silhouette of the moving human form. Bakic and Stockman

(1999) track the human face, eyes and nose using a workstation camera in order to move

the mouse cursor. Figure 9.17 shows a sample screen exhibiting the features detected in the

current frame and the resulting position of the cursor in an array of 8x8 menu choices. The

smiling face in the second row third column indicates the user's selection. Processing can

be done at 15 or more frames per second because of the integrated use of domain knowl-

edge. The knowledge of face color is used to �nd the face in the image and knowledge of

the structure of a face is used to locate the eyes and nose. Moreover, trajectories of the

eyes and nose are used to predict where those features should be found in the next incoming

frame: when they are found in the predicted neighborhood, global face detection is not done.

The making of the movie Titanic is one of many examples where integrated computer

graphics and computer vision techniques were used to combine real imagery and synthetic

imagery. Imagery was shot of a model ship and was later augmented by placing moving

models on the deck of the ship. An actress was used to capture the motion of a live human

24 Computer Vision: Mar 2000

wearing a
owing dress typical of the early 20-th century. Many small lights were attached

to a real dress so that feature points could easily be detected in a motion sequence. The

trajectories of these moving points were then used to orchestrate the motion of model people

and model clothes, which were added to various positions in the images taken of the model

ship. Many minutes of computer and operator time are used per frame of such a blockbuster

movie, so not all steps need to be fully automatic.

9.5 Detecting Signi�cant Changes in Video

Video sequences may record minutes or hours of surveillance, di�erent takes of a TV news

crew, or a �nished documentary or movie. It is becoming increasingly important to segment

and store subsequences in digital libraries for random access. Some important concepts

and methods related to parsing and analyzing video sequences are discussed in this section.

First, we de�ne some points of change found in videos and some other image sequences.

� A scene change is a change of environment; for example, from a restaurant scene to

a street scene. Gross changes in the background are expected. Often, scene changes

are made over ten to �fty frames using one of the camera e�ects below.

� A shot change is a signi�cant change of camera view of the same scene. Often, this

is accomplished by switching cameras. For example, in the restaurant scene camera

one views actor A speaking and then frames are taken from camera two to view the

response of the actor B across the table.

� A camera pan is used to sweep a horizontal view of the scene. If the camera pans

from right to left, objects appear to enter at the left and move across the images to

the right, �nally exiting right. Motion vectors computed from consecutive frames of

such a panning sequence of a static scene will be in the same direction from left to

right.

� Camera zoom changes the focal length over time to expand the image of some part

of the scene (zoom in) or to reduce the image of a scene part and include more adjacent

background (zoom out).

� Camera e�ects fade, dissolve, and wipe are used for transitions from one source of

imagery to a di�erent source of imagery. A fade out is a continuous transition from one

video source to black or to white frames, whereas a fade in is a transition from black

or from white frames to some video source. A transition from video source A to video

source B can be achieved by fading out A and then fading in B. A dissolve changes the

pixels of A into pixels of B over several frames. One type of dissolve weights the pixels

of A by (1�t=T) and the pixels of B by t=T over the frames t = 0; : : : ; T . A wipemakes

the transition from source A to B by changing the size of the regions where A and B

appear in the frame. One can imagine a windshield wiper crossing our window with

source A displayed on one side of the wiper and source B on the other. Wipes can be

done using a vertical, horizontal, or diagonal boundary between the two regions. Or,

source B can appear within a small circular region that grows to cover the entire frame.

Shapiro and Stockman 25

Exercise 12
Construct a pseudo-code algorithm that blends video source A into video source B using

wipe. Source A is the image sequence At[r; c] and source B is the image sequence Bt[r; c]. (a)

Suppose the wipe is accomplished from time t1 to time t2 by using a diagonal line of slope 1

originating through pixel [0; 0] (top left) at time t1 and ending through pixel [M � 1; N � 1]

at time t2. (b) Suppose the wipe is accomplished by a growing circular region at the frame

center. At time t1 the radius of the circle is 0 and at time t2 the radius is large enough such

that the circle circumscribes the entire frame.

9.5.1 Segmenting Video Sequences

The goal of the analysis is to parse a long sequence of video frames into subsequences rep-

resenting single shots or scenes. As an example, consider a 30-minute video of a TV news

program. There will be several 10 to 15 second segments where the camera shot is of a

newcaster reporting from a desk: the background is a constant o�ce background, but there

may be zooming of the camera. After such a segment, it is common to transition to another

source documenting another event, perhaps frames of a
ood, an interesting play in sports,

a meeting, or a government o�cial jogging. Often there are several di�erent shots of the

event being reported with transitions between them. The transitions can be used to seg-

ment the video and can be detected by large changes in the features of the images over time.

One obvious method of computing the di�erence between two frames It and It+� of a se-

quence is to compute the average di�erence between corresponding pixels as in Formula 9.7.

Depending on the camera e�ect being detected, the time interval � may be one or more

frames.

dpixel(It; It+�) =

PMaxRow�1

r=0

PMaxCol�1

c=0 j It[r; c] � It+�[r; c] j
MaxRow �MaxCol

(9.7)

Formula 9.7 is likely to mislead us by yielding a large di�erence when there is even a

small amount of camera pan or some object motion in an otherwise stable shot. A more

robust variation, proposed by Kasturi and Jain (91), is to break the image into larger blocks

and test to see if a majority of the blocks are essentially the same in both images. A

likelihood ratio test de�ned in Formula 9.8 was proposed to evaluate whether or not there

was signi�cant change in the intensities of corresponding blocks. Let block B1 in image I1
have intensity mean and variance u1 and v1 and block B2 in image I2 have intensity mean

and variance u2 and v2. The block di�erence is de�ned in terms of the likelihood ratio in

Formula 9.8. If a su�cient number of the blocks have zero di�erence then the decision is

that the two images are from essentially the same shot. Clearly, Formula 9.8 will be more

stable than Formula 9.7 when the images are highly textured and are not stabilized from

frame to frame to remove the e�ects of small motions of the camera.

r =
[v1+v2

2
+ (u1�u2

2
)2]2

v1v2
(9.8)

dblock(B1; B2) = 1 if r > �r

= 0 if r � �r

26 Computer Vision: Mar 2000

d(I1; I2) =
X

B1i2I1 ;B2i2I2

dblock(B1i; B2i)

The di�erence between two images can be represented in terms of the di�erence between

their histograms as was done in dhist(I;Q) of Chapter 8. In our current discussion, I is

image I1 and Q is image I2. A 64-level histogram can provide enough levels. For color video

frames, a value in the interval [0; 63] can be obtained by concatenating the higher order two

bits of the red, green and blue color values. Histogram comparison can be faster than the

previous methods and is potentially a better representative of the general features of the

scene. Since it totally avoids any spatial coherence checking, it can be completely fooled

when two images have similar histograms but totally di�erent spatial distributions, and in

fact are from two di�erent shots.

Figure 9.18: Four frames from a documentary video. The top two and the bottom two are

separated across a camera break. Reprinted from Zhang et al 1993 with permission from

Springer-Verlag.

Figure 9.18 shows four frames from the same documentary video. The top two frames

occur prior to a scene break and the bottom two frames occur after the scene break. Fig-

ure 9.19 shows the histograms computed from the �rst three frames shown in Figure 9.18.

The top two histograms are similar: this means that the two frames from which they were

derived are likely to be from the same shot. The bottom histogram di�ers signi�cantly from

Shapiro and Stockman 27

the �rst two, and thus the third frame from Figure 9.18 is likely to be from a di�erent shot.

Figure 9.19: Histograms from the �rst three frames shown in Figure 9.18. The top two

are similar as are the frames from which they were derived. The bottom histogram is

signi�cantly di�erent from the top two, indicating that the frame from which is was derived

is di�erent from the �rst two. Reprinted from Zhang et al 1993 with permission from

Springer-Verlag.

9.5.2 Ignoring Certain Camera E�ects

We do not want to segment the video sequence when adjacent frames di�er signi�cantly

due only to certain camera e�ects such as pan or zoom. Transitions detected as above can

be subject to some simple motion analysis to determine if they are e�ects to be ignored.

Panning can be detected by computing motion vectors and determining if the motion vec-

tors closely cluster around some modal direction and magnitude. We can do this by simple

analysis of the set V output from Algorithm 3. Zooming can be detected by examining the

motion vectors at the periphery of the motion �eld. Zooming in or out is indicated by the

28 Computer Vision: Mar 2000

.

v1

v2

v4v3

Figure 9.20: Heuristics for detection of camera zoom by comparing motion vectors across

the periphery of the motion �eld. The di�erence of vertical components across the �eld

exceeds the vertical component of either vector: jv1r � v2rj > maxfjv1rj; jv2rjg. Similarly,

jv3c� v4cj > maxfjv3cj; jv4cjg for horizontally opposed motion vectors. These relations hold

for both zoom in (left) and zoom out (right).

motion vectors at the periphery approximately summing to zero. Using only the periphery

of the motion �eld accounts for cases where the FOE or FOC is not near the center of the

�eld. Suppose that motion vectors are computed using MPEG-type block matching tech-

niques so that there are motion vectors for blocks along the top and bottom of the motion

�eld determined by I1 and I2. The di�erence between the vertical components of motion

vectors in corresponding positions across the image should be greater than that of either

the top or bottom motion vector as shown in Figure 9.20. The relationship is similar for

the horizontal components of motion vectors horizontally related across the image. Both

zoom in and out can be detected reasonably well using these heuristics. The quality of the

motion �eld derived from block matching will deteriorate, however, due to change of scale

as the zooming speeds up.

Exercise 13

Obtain two consecutive frames of a video of the same scene. (a) Compute the average pixel

di�erence as de�ned in Formula 9.7. (b) Partition the image into 2 x 2 = 4 blocks and

compute the sum of their block di�erences as de�ned in Equation 9.8.

9.5.3 Storing Video Subsequences

Once a long video sequence is parsed into meaningful subsequences, these subsequences can

be stored in a video database for query and retrieval. They can be accessed using some of

the same methods discussed in Chapter 8. Certain key frames can be identi�ed and used

for access in the same manner as in Chapter 8. In the future, we will probably be able

to go much farther; for example, automatic motion analysis might be performed to assign

symbolic action labels such as running, �ghting, or debating. Face recognition might be per-

formed in order to label famous people, or general object recognition might provide labels

such as horse or house. Although the use of many frames implies more computational e�ort

Shapiro and Stockman 29

with video compared to still images, the information provided by motion analysis should

increase both the cability to segment objects from background and the capability to classify

them.

Exercise 14

Consider the application, discussed earlier in this chapter, of computing an analysis of a

tennis match from a video of the match. (a) What are the actions or events that an analysis

program should report? (b) What quantitative data should be reported?

9.6 References

The discussion of tracking the players and ball in a tennis match is based upon the recent

work of Pingali, Jean and Carlbom (1998) at Bell Laboratories. The paper by W. Freeman

et al (1998) describes the results of several experiments that have used computer vision

techniques to create a gesture interface for interacting with several existing applications.

Included is description of a fast motion estimation algorithm. Our treatment of video

parsing and indexing followed the work of Zhang et al (93) and Smolier and Zhang (96).

The treatment of computing smooth trajectories from many frames of featureless points

was based on the work of Sethi and Jain (1987), which was done in an era of computer

vision where it was common to study what could be computed from a small set of general

assumptions. More recent work, such as that reported by Maes etal (1996), Darrell et al

(1998) and Bakic et al (1999) integrates problem-speci�c knowledge in order to speed up

the process and make it more robust. The work by Ayers and Shah (1998) shows how to

interpret motion and change in terms of the semantics relevant to a surveillance application.

1. D. Ayers and M. Shah (1998), Recognizing Human Actions in a Static Room, Proc.

4th IEEE Workshop on Applications of Computer Vision, Princeton, NJ (19-21 Oct

1998)42-47.

2. V. Bakic and G. Stockman (1999), Menu Selection by Facial Aspect, Proc. Vision

Interface '99, Quebec Canada (18-21 May 99).

3. T. Darrell (1998), A radial cumulative similarity transform for robust image corre-

spondence, Proc. IEEE CVPR, Santa Barbara, CA (June 1998)656-662.

4. T. Darrell, G. Gordon, M. Harville and J. Wood�ll (1998), Integrated person tracking

using stereo, color, and pattern detection, Proc. IEEE CVPR, Santa Barbara, CA

(June 1998)601-608.

5. W. Freeman, D. Anderson, P. Beardsley, C. Dodge, M. Roth, C. Weissman, W. Yer-

azunis, H. Kage, K. Kyuma, Y. Miyake and K. Tanaka (1998), Computer Vision for

Interactive Computer Graphics, IEEE Computer Graphics and Applications,

Vol. 18, No. 3 (May-June 1998)42-53.

6. B. Horn and B. Schunck (1981), Determining Optical Flow, Arti�cial Intelligence,

Vol. 17 (1981)185-203.

30 Computer Vision: Mar 2000

7. R. Kasturi and R. Jain (1991), Dynamic Vision, in Computer Vision Principles,

R. Kasturi and R. Jain (Eds), IEEE Computer Society Press, Washington, D.C.

(1991)469-480.

8. P. Maes, T. Darrell, B. Blumberg and A. Pentland (1996), The ALIVE System:

Wireless, Full-Body, Interaction with Autonomous Agents, ACM Multimedia Sys-

tems:Special Issue on Multimedia and Multisensory Virtual Worlds, Sprint 1996.

9. G. Pingali, Y. Jean and I. Carlbom (1998), Real Time Tracking for Enhanced Tennis

Broadcasts, Proc. IEEE CVPR, Santa Barbara, CA (June 1998)260-265.

10. V. Salari and I. Sethi (1990), Correspondence of Feature Points in Presence of Occlu-

sion, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 12,

No. 1, (1990)87-91.

11. S. Smolier and H-J Zhang (1996), Video Indexing and Retrieval, in Multimedia

Systems and Techniques, B. Furht (Ed), Kluwer Academic Publishers, (1996)293-

322.

12. H-J. Zhang, A. Kankanhalli and S. Smoliar (1993), Automatic partitioning of full-

motion video, Multimedia Systems, Vol 1, No. 1 (1993)10-28.

