
Chapter 5

Filtering and Enhancing Images

This chapter describes methods to enhance images for either human consumption or for fur-

ther automatic operations. Perhaps we need to reduce noise in the image; or, certain image

details need to be emphasized or suppressed. Chapter 1 already introduced two methods of

image �ltering: �rst, in the blood cell image, isolated black or white pixels were removed

from larger uniform regions; secondly, it was shown how a contrast operator could enhance

the boundaries between di�erent objects in the image, i.e. improve the constrast between

the pictures and the wall.

This chapter is about image processing, since the methods take an input image and create

another image as output. Other appropriate terms often used are �ltering, enhancement, or
conditioning. The major notion is that the image contains some signal or structure, which

we want to extract, along with uninteresting or unwanted variation, which we want to sup-

press. If decisions are made about the image, they are made at the level of a single pixel or

its local neighborhood. We have already seen how we might label an image pixel as object
versus background or boundary versus not boundary.

Image processing has both theory and methods that can �ll several books. Only a few

classical image processing concepts are treated here in detail. Most methods presented use

the important notion that each pixel of the output image is computed from a local neigh-

borhood of the corresponding pixel in the input image. However, a few of the enhancement

methods are global in that all of the input image pixels are used in some way in creating

the output image. The two most important concepts presented are those of (1) matching
an image neighborhood with a pattern or mask (correlation) and (2) convolution, a single

method that can implement many useful �ltering operations.

5.1 What needs �xing?

Before launching into the methods of this chapter, it's useful to review some of the problems

that need them. Two general categories of problems follow.
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Figure 5.1: (Left) Scratches from original photo of San Juan are removed; (center) inten-

sities of house photo with dark areas are rescaled to show better detail in some regions;

(right) image of airplane part has edges enhanced to support automatic recognition and

measurement.

5.1.1 An Image needs Improvement

� On safari in Africa you got a shot of a lion chasing an antelope. Unfortunately, the

sun was behind your main actor and much of your picture is too dark. The picture

can be enhanced by boosting the lower intensities and not the higher ones.

� An old photo has a long bright scratch, but is otherwise �ne. The photo can be

digitized and the scratch removed.

� A paper document needs to be scanned and converted into a text �le. Before apply-

ing character recognition, noise pixels need to be cleaned from the background and

dropouts in the characters need to be �lled.

5.1.2 Low-level features must be detected

� 0.12 inch diameter wire is made by a process that requires (closed loop) feedback

from a vision sensor that constantly measures the wire diameter. The two sides of the

wire can be located using an edge operator which accurately identi�es the boundary

between the wire and its background.

� An automatic pilot system for a car can steer by constantly monitoring the white lines

on the highway. The white lines can be found in frames of a forward-looking video

camera by �nding two edges with opposite contrast and similar direction.



Shapiro and Stockman 3

Figure 5.2: (Left) Original sensed �ngerprint; (center) image enhanced by detection and

thinning of ridges; (right) identi�cation of special features called \minutia", which can be

used for matching to millions of �ngerprint representations in a database (contributed by

Shaoyun Chen and Anil Jain).

� A paper blueprint needs to be converted into a CAD (computer-aided-design) model.

Part of the process involves �nding the blueprint lines as dark streaks in the image

about 1 pixel wide.

This chapter deals mostly with traditional methods of image enhancement and somewhat

with image restoration. Before moving on, it is important to de�ne and distinguish these

terms.

1 Definition Image enhancement operators improve the detectability of important im-
age details or objects by man or machine. Example operations include noise reduction,
smoothing, contrast stretching, and edge enhancement.

2 Definition Image restoration attempts to retore a degraded image to an ideal condi-
tion. This is possible only to the extent that the physical processes of ideal image formation
and image degradation are understood and can be modeled. The process of restoration in-
volves inverting the degradation process to return to an ideal image.

5.2 Grey level mapping

It is common to enhance images by changing the intensity values of pixels. Most software

tools for image processing have several options for changing the appearance of an image

by transforming the pixels via a single function that maps an input grey value into a new

output value. It is easy to extend this so that a user can indicate several di�erent image

regions and apply a separate mapping function to each. Remapping the grey values is often

called stretching because it is common to stretch the grey values of an image that is too

dark onto the full set of grey values available. Figure 5.3 shows a picture whose intensity

values are stretched according to four di�erent mapping functions. Figure 5.3(a) shows the

result of applying an ad hoc function, which was designed by the user of an interactive

enhancement tool. The user de�nes the grey level mapping function gout = f(gin) using

the computer mouse: typically the image tool �ts a smooth spline through points chosen

by the user. Figure 5.3(b) and (c) show remapping using the function f(x) = x1=: this

function nonlinearly boosts or reduces intensities according to whether  > 1 or  < 1.
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Figure 5.3: (Top row) Intensity mapping functions f and (center row) output images re-

sulting from applying f to the original image from Figure 5.1 and (bottom row) resulting

grey level histograms. (a) House image pixels remapped according to a user-de�ned smooth

function that stretches the low range of intensities and compresses the higher range ; (b)

Gamma correction with f(x) = x0:3 boosts dark pixels more than bright ones; (c) Gamma

correction with f(x) = x2:0 reduces bright pixels more than dark pixels; (d) Use of two

di�erent Gamma values to boost dark pixels < t and reduce bright pixels > t. Di�erent

scene objects appear with di�erent clarity in the several images.

This operation ( called Gamma correction) might be the proper model to restore an image

to an original form after undergoing known physical distortion. Figure 5.3(d) shows that

a more complex mapping can be de�ned by using di�erent functions for darker pixels and

brighter pixels according to some de�ning threshold t. All of the functions in Figure 5.3

stretch or extend at least some range of intensities to show more variation in the output.

Image variation will be increased in the intensity ranges where the slope of function f(x) is

greater than 1.

3 Definition A point operator applied to an image is an operator in which the output
pixel is determined only by the input pixel, Out[x; y] = f(In[x; y]): possibly function f

depends upon some global parameters.
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Figure 5.4: Histogram equalization maps the grey scale such that the output image uses the

entire range available and such that there are approximately the same number of pixels of

each grey value in the output image: images after histogram equalization are at the right.

4 Definition A contrast stretching operator is a point operator that uses a piecewise
smooth function f(In[x; y]) of the input grey level to enhance important details of the image.

Because point operators map one input pixel to one output pixel, they can be applied to

an entire pixel array in any sequential order or can be applied in parallel. Ad hoc mappings

of intensities, including nonmonotonic ones as in Figure 5.3, can be very useful in enhancing

images for general human consumption in graphics and journalism. However, in certain

domains, such as radiology, one must be careful not to alter a meaningful intensity scale to

which human experts and intricate sensors are carefully calibrated. Finally, we note that the

performance of some algorithms for machine vision might not be changed by monotonic grey

scale stretching (f(g2) > f(g1) whenever grey level g2 > g1), although humans monitoring

the process might appreciate the enhanced images.

5.2.1 Histogram equalization

Histogram equalization is often tried to enhance an image. The two requirements on the

operator are that (a) the output image should use all available grey levels and (b) the

output image has approximately the same number of pixels of each grey level. Requirement

(a) makes good sense but (b) is ad hoc and its e�ectiveness must be judged empirically.

Figure 5.4 shows images transformed by histogram equalization. One can see that the

remapping of grey levels does indeed change the appearance of some regions; for example,

the texture of the shrub in front of the house is better de�ned. The face image had been

cropped from a larger image and the cropped window did not have many lower intensity

pixels. Requirement (b) will cause large homogeneous regions, such as sky, to be remapped

into more grey levels and hence to show more texture. This may or may not help in image

interpretation.

Requirements (a) and (b) mean that the target output image uses all grey values z =

z1; z = z2; : : : ; z = zn and that each grey level zk is used approximately q = (R�C)=n times,

where R;C are the number of rows and columns of the image. The input image histogram

Hin[] is all that is needed in order to de�ne the stretching function f . Hin[i] is the number

of pixels of the input image having grey level zi. The �rst grey level threshold t1 is found

by advancing i in the input image histogram until approximately q1 pixels are accounted
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for: all input image pixels with grey level zk < t1� 1 will be mapped to grey level z1 in the

output image. Threshold t1 is formally de�ned by the following computational formula:

t1�1X
i=1

Hin[i] � q1 <

t1X
i=1

Hin[i]:

This means that t1 is the smallest grey level such that the original histogram contains no

more than q pixels with lower grey values. The k-th threshold tk is de�ned by continuing

the iteration:
tk�1X
i=1

Hin[i] � (q1 + q2 + : : :+ qk) <

tkX
i=1

Hin[i]:

A practical implementation of the mapping f is a lookup table that is easily obtained from

the above process. As the above formula is computed, the threshold values tk are placed

(possibly repetitively) in array T [] as long as the inequality holds: thus we'll have function

zout = f(zin) = T [zin].

Exercise 1
An input image of 200 pixels has the following histogram: Hin =

[0; 0; 20; 30; 5;5;40;40;30;20;10;0;0;0; 0; 0]. (a) Using the formula for equalizing the

histogram (of 15 grey levels), what would be the output image value f(8)? (b) Repeat

question (a) for f(11). (c) Give the lookup table T [] implementing f for transforming all

input image values.

Exercise 2 An algorithm for histogram equalization

Use pseudocode to de�ne an algorithm for histogram equalization. Be sure to de�ne all the

data items and data structures being used.

Exercise 3 A histogram equalization program

(a) Using the pseudocode from the previous exercise, implement and test a program for

histogram equalization. (b) Describe how well it works on di�erent images.

It is often the case that the range of output image grey levels is larger than the range of

input image grey levels. It is thus impossible for any function f to remap grey levels onto

the entire output range. If an approximately uniform output histogram is really wanted, a

random number generator can be used to map an input value zin to some neighborhood of

T [zin]. Suppose that the procedure described above calls for mapping 2q pixels of level g

to output level g1 and 0 pixels to level g1 + 1. We can then simulate a coin ip so that an

input pixel of level g has a 50-50 chance of mapping to either g1 or g1 + 1.

5.3 Removal of Small Image Regions

Often, it is useful to remove small regions from an image. A small region might just be

the result of noise, or it might represent low level detail that should be suppressed from

the image description being constructed. Small regions can be removed by changing single

pixels or by removing components after connnected components are extracted.
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Exercise 4
Give some arguments for and against \randomizing" function f in order to make the output

histogram more uniform.
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Figure 5.5: Binary image of red blood cells (top left) with salt and pepper noise removed

(top right). Middle row: templates showing how binary pixel neighborhoods can be cleaned.

Bottom row: templates de�ning isolated pixel removal for a general labeled input image;

(bottom left) 8-neighborhood decision and (bottom right) 4-neighborhood decision.

5.3.1 Removal of Salt-and-Pepper Noise

The introductory chapter briey discussed how single anomalous pixels can be removed

from otherwise homogeneous regions and methods were extended in Chapter 3. The pres-

ence of single dark pixels in bright regions, or single bright pixels in dark regions, is called

salt and pepper noise. The analogy to real life is obvious. Often, salt and pepper noise is

the natural result of creating a binary image via thresholding. Salt corresponds to pixels

in a dark region that somehow passed the threshold for bright, and pepper corresponds to

pixels in a bright region that were below threshold. Salt and pepper might be classi�cation

errors resulting from variation in the surface material or illumination, or perhaps noise in

the analog/digital conversion process in the frame grabber. In some cases, these isolated

pixels are not classi�cation errors at all, but are tiny details contrasting with the larger

neighborhood, such as a button on a shirt or a clearing in a forest, etc. and it may be that

the description needed for the problem at hand prefers to ignore such detail.

Figure 5.5 shows the removal of salt and pepper noise from a binary image of red blood

cells. The operations on the input image are expressed in terms of masks given at the

bottom of the �gure. If the input image neighborhood matches the mask at the left, then

it is changed into the neighborhood given by the mask at the right. Only two such masks
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Figure 5.6: Original blood cell image (left) with salt and pepper noise removed and compo-

nents with area 12 pixels or less removed (right).

are needed for this approach. In case the input image is a labeled image created by use

of a set of thresholds or some other classi�cation procedure, a more general mask can be

used. As shown in the bottom row of Figure 5.5, any pixel label 'L' that is isolated in

an otherwise homogenous 8-neighborhood is coerced to the majority label 'X'. 'L' may be

any of the k labels used in the image. The �gure also shows that either the eight or four

neighborhood can be used for making the decision; in the case of the 4-neighborhood, the

four corner pixels are not used in the decision. As shown in Chapter 3, use of di�erent

neighborhoods can result in di�erent output images, as would be the case with the red

blood cell image. For example, some of the black pixels at the bottom left of Figure 5.5 that

are only 8-connected to a blood cell region could be cleaned using the 4-neighborhood mask.

5.3.2 Removal of Small Components

Chapter 3 discussed how to extract the connected components of a binary image and de-

�ned a large number of features that could be computed from the set of pixels comprising

a single component. The description computed from the image is the set of components,

each representing a region extracted from the background, and the features computed from

that region. An algorithm can remove any of the components from this description based

on computed features; for example, components with a small number of pixels or compo-

nents that are very thin can be removed. This processing could remove the small noise

region toward the upper right in the blood cell image of Figure 5.5 (top right). Once small

regions are culled from the description it may not be necessary, or possible, to generate the

corresponding output image. If an output image is necessary, information must be saved in

order to return to the input image and correctly recode the pixels from the changed regions.

Figure 5.6 shows the blood cell image after removal of salt and pepper noise and components

of area 12 pixels or less.

5.4 Image Smoothing

Often, an image is composed of some underlying ideal structure, which we want to detect

and describe, together with some random noise or artifact, which we would like to remove.
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Figure 5.7: Ideal image of checkerboard (top left) with pixel values of 0 in the black squares

and 255 in the white squares; (top center) image with added Gaussian noise of standard

deviation 30; (top right) pixel values in a horizontal row 100 from the top of the noisy image;

(bottom center) noise averaged using a 5x5 neighborhood centered at each pixel; (bottom

right) pixels across image row 100 from the top.

For example, a simple model is that pixels from the image region of a uniform object have

value gr + N (0; �), where gr is some expected grey level for ideal imaging conditions and

N (0; �) is Gaussian noise of mean 0 and standard deviation �. Figure 5.7(top left) shows

an ideal checkerboard with uniform regions. Gaussian noise has been added to the ideal

image to create the noisy image in the center: note that the noisy values have been clipped

to remain within the interval [0; 255]. At the top right is a plot of the pixel values across a

single (horizontal) row of the image.

Noise which varies randomly above and below a nominal brightness value for a region

can be reduced by averaging a neighborhood of values.

OutputImage[r; c] = average of some neighborhood of InputImage[r; c] (5.1)

Out[r; c] = (

+2X
i=�2

+2X
j=�2

In[r + i; c+ j])=25 (5.2)

Equation 5.2 de�nes a smoothing �lter that averages 25 pixel values in a 5x5 neighbor-

hood of the input image pixel in order to create a smoothed output image. Figure 5.7(bottom

center) illustrates its use on the checkerboard image: the image row shown at the bottom

right of the �gure is smoother than the input image row shown at the top right. This row is

not actually formed by averaging just within that row, but by using pixel values from �ve



10 Computer Vision: Mar 2000

rows of the image. Also note that while the smooth image is cleaner than the original, it is

not as sharp.

5 Definition (Box filter) Smoothing an image by equally weighting a rectangular neigh-
borhood of pixels is called using a box �lter.

Rather than weight all input pixels equally, it is better to reduce the weight of the input

pixels with increasing distance from the center pixel I[xc; yc]. The Gaussian �lter does this

and is perhaps the most commonly used of all �lters. Its desirable properties are discussed

more fully below.

6 Definition (Gaussian filter) When a Gaussian �lter is used, pixel [x; y] is weighted
according to

g(x; y) =
1p
2� �

e�
d2

2�2

where d =
p
(x� xc)2 + (y � yc)2 is the distance of the neighborhood pixel [x; y] from the

center pixel [xc; yc] of the output image where the �lter is being applied.

Later in this chapter, we will develop in more detail both the theory and methods of

smoothing and will express edge detection within the same framework. Before proceeding

in that direction, we introduce the useful and intuitive median �lter.

5.5 Median Filtering

Averaging is sure to produce a better estimate of I[x; y] when the average is taken over a

homogeneous neighborhood with zero-mean noise. When the neighborhood straddles the

boundary between two such regions, the estimate uses samples from two intensity popu-

lations, resulting in blurring of the boundary. A popular alternative is the median �lter,
which replaces a pixel value with the median value of the neighborhood.

7 Definition (median) Let A[i]i=0:::(n�1) be a sorted array of n real numbers. The median
of the set of numbers in A is A[(n� 1)=2]

Sometimes, the cases of n being odd versus even are di�erentiated. For odd n, the array

has a unique middle as de�ned above. If n is even, then we can de�ne that there are two

medians, at A[n=2] and A[n=2�1], or one median, which is the average of these two values.

Although sorted order was used to de�ne the median, the n values do not have to be fully

sorted in practice to determine the median. The well-known quicksort algorithm can easily

be modi�ed so that it only recurses on the subarray of A that contains the (n + 1)=2-th

element; as soon as a sort pivot is placed in that array position the median of the entire set

is known.

Figure 5.8 shows that the median �lter can smooth noisy regions yet better preserve

the structure of boundaries between them. When a pixel is actually chosen from one of

the white squares, but near the edge, it is likely that the majority of the values in its

neighborhood are white pixels with noise: if this is true, then neighboring pixels from a

black square will not be used to determine the output value. Similarly, when computing
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Figure 5.8: (Left) Noisy checkerboard image; (center) result of setting output pixel to the

median value of a 5x5 neighborhood centered at the pixel; (right) display of pixels across

image row 100 from the top; compare to Figure 5.7.

Figure 5.9: (Left) Input image contains both Gaussian noise and bright ring artifacts added

to four previously uniform regions; (right) result of applying a 7x7 median �lter.

the output pixel on the black side of an edge, it is highly likely that a majority of those

pixels are black with noise, meaning that any neighborhood samples from the adjacent white

region will not be used any further in computing the output value. Thus, unlike smooth-

ing using averaging, the median �lter tends to preserve edge structure while at the same

time smoothing uniform regions. Median �ltering can also remove salt-and-pepper noise

and most other small artifacts that e�ectively replace a few ideal image values with noise

values of any kind. Figure 5.9 shows how structured artifact can be removed while at the

same time reducing variation in uniform regions and preserving boundaries between regions.

Computing the median requires more computation time than computing a neighborhood

average, since the neighborhood values must be partially sorted. Moreover, median �ltering

is not so easily implemented in special hardware that might be necessary for real-time

processing, such as in a video pipeline. However, in many image analysis tasks, its value in

image enhancement is worth the time spent.

5.5.1 Computing an Output Image from an Input Image

Now that examples have been presented showing what kinds of image enhancements will be

done, it's important to consider how these operations on images can be performed. Di�erent
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Exercise 5 Modifying Quicksort 1

(a) Find pseudocode for the traditional quicksort algorithm from one of the many data

structures and algorithms texts. Modify the algorithm to return only the median as soon

as it can be decided. (b) What is the computational e�ort of �nding the median relative to

performing the entire sort? (b) Implement your algorithm in some programming language

and test it on some example images.

Exercise 6 Modifying Quicksort 2

Consider using the quicksort algorithm from above to detect steps in the picture function,

such as the steps from black to white squares in the checkerboard images. Suppose the

median of a neighborhood about I[r,c] has just been found by placing a pivot value in array

position A[n/2]. Describe how the rest of the array can be processed to decide whether or

not the pixel at [r,c] is or is not on the boundary between regions of di�erent brightness.

options for controlling the �ltering of an input image to produce an enhanced output image

are represented by the generic algorithm below.

Algorithm 1 shows simple sequential program control which considers each pixel of the

output image G in raster scan order and computes the value of G[r; c] using a neighbor-

hood of pixels around F[r; c]. It should be clear that the pixels of output image G could

be computed in a random order rather than in row and column order, and, in fact, could

all be computed in parallel. This holds because the input image is unchanged by any of

the neighborhood computations. Secondly, the procedure compute using neighbors could be

implemented to perform either boxcar or median �ltering. For boxcar �ltering, the pro-

cedure need only add up the w � h pixels of the neighborhood of F[r; c] and then divide

by the number of pixels w � h. To implement a median �lter, the procedure could copy

those w�h pixel values into a local arrayA and partially sort it to obtain their median value.

Control could also be arranged so that only h rows of the image were in main memory

at any one time. Outputs G[r; c] would be computed only for the middle row r. Then,

a new row would be input to replace the oldest row in memory and the next output row

of G[r; c] would be computed. This process is repeated until all possible output rows are

computed. Years ago, when computers had small main memories, the primary storage for

images was on disk and many algorithms had to process images a few rows at a time. Today,

such control is still of interest because it is used in image processing boards implementing

a pipelined architecture.

5.6 Detecting Edges using Di�erencing Masks

Image points of high contrast can be detected by computing intensity di�erences in local

image regions. Typically, such points form the border between di�erent objects or scene

parts. In this section, we show how to do this using neighborhood templates or masks. We

start by using one-dimensional signals: this helps develop both the intuition and formalism,

and is also very important in its own right. The 1D signals could just be rows or columns

of a 2D image. The section ends by studying more general 2D situations.
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Compute output image pixel G[r,c] from neighbors of input image pixel F[r,c].

F[r; c] is an input image of MaxRow rows and MaxCol columns;

F is unchanged by the algorithm.

G[r; c] is the output image of MaxRow rows and MaxCol columns.

The border of G are all those pixels whose neighborhoods

are not wholly contained in G.

w and h are the width and height, in pixels, de�ning a neighborhood.

procedure enhance image(F,G,w,h);

f
for r := 0 to MaxRow - 1

for c := 0 to MaxCol - 1

f
if [r,c] is a border pixel then G[r,c] := F[r,c];

else G[r,c] := compute using neighbors ( F, r, c, w, h );

g ;
g
procedure compute using neighbors ( IN, r, c, w, h )

f
using all pixels within w/2 and h/2 of pixel IN[r,c],

compute a value to return to represent IN[r,c]

g

Algorithm 1: Compute output image pixel G[r,c] from neighbors of input image pixel

F[r,c].

Exercise 7
Implement Algorithm 1 in some programming language. Code both the boxcar and median

�ltering operations and test them on some images such as in Figure 5.9.
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5.6.1 Di�erencing 1D Signals
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Figure 5.10: (Left) The �rst (S') and second (S") di�erence signals are scaled approxima-

tions to the �rst and second derivatives of the signal S. (Right) MasksM' andM" represent

the derivative operations.

Figure 5.10 shows how masks can be used to compute representations of the derivatives

of a signal. Given that the signal S is a sequence of samples from some function f , then

f 0(xi) � (f(xi) � f(xi�1)=(xi � xi�1). Assuming that the sample spacing is �x = 1, the

derivative of f(x) can be approximated by applying the mask M0 = [�1;1] to the sam-

ples in S as shown in Figure 5.10 to obtain an output signal S'. As the �gure shows, it's

convenient to think of the values of S' as occurring in between the samples of S. A high

absolute value of S'[i] indicates where the signal is undergoing rapid change or high contrast.
Signal S' itself can be di�erentiated a second time using mask M0 to produce output S"

which corresponds to the second derivative of the original function f . The important result

illustrated in Figure 5.10 and derived in the equations below is that the approximate second

derivative can be computed by applying the maskM00 to the original sequence of samples S.

S0[i] = �S[i � 1] + S[i] (5.3)

mask M0 = [�1; +1] (5.4)

S00[i] = �S0[i] + S0[i+ 1] (5.5)

= �(S[i]� S[i � 1]) + (S[i + 1]� S[i]) (5.6)

= S[i � 1]� 2S[i] + S[i + 1] (5.7)
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mask M00 = [1; �2; 1] (5.8)

mask M = [�1;0;1]

S1 12 12 12 12 12 24 24 24 24 24

S1 
 M 0 0 0 0 12 12 0 0 0 0

(a) S1 is an upward step edge

S2 24 24 24 24 24 12 12 12 12 12

S2 
 M 0 0 0 0 -12 -12 0 0 0 0

(b) S2 is a downward step edge

S3 12 12 12 12 15 18 21 24 24 24

S3 
 M 0 0 0 3 6 6 6 3 0 0

(c) S3 is an upward ramp

S4 12 12 12 12 24 12 12 12 12 12

S4 
 M 0 0 0 12 0 -12 0 0 0 0

(d) S4 is a bright impulse or \line"

Figure 5.11: Cross correlation of four special signals with �rst derivative edge detecting

mask [�1; 0; 1]; (a) upward step edge, (b) downward step edge, (c) upward ramp, and (d)

bright impulse. Note that, since the coordinates of M sum to zero, output must be zero on

a constant region.

If only points of high contrast are to be detected, it is very common to use the absolute

value after applying the mask at signal position S[i]. If this is done, then the �rst derivative

mask can be either M0 = [�1;+1] or [+1;�1] and the second derivative mask can be either

M00 = [+1;�2;+1] or [�1;+2;�1]. A similar situation exists for 2D images as we shall

soon see. Whenever only magnitudes are of concern, we will consider these patterns to be

the same, and whenever the sign of the change is important, we will consider them to be

di�erent.

Use of another common�rst derivative mask is shown in Figure 5.11. This mask has 3 co-

ordinates and is centered at signal point S[i] so that it computes the signal di�erence across

the adjacent values. Because �x = 2, it will give a high estimate of the actual derivative

unless the result is divided by 2. Moreover, this mask is known to give a response on perfect

step edges that is 2 samples wide, as is shown in Figure 5.11(a)-(b). Figure 5.12 shows the

response of the second derivative mask on the sample signals. As Figure 5.12 shows, signal

contrast is detected by a zero-crossing, which localizes and ampli�es the change between two

successive signal values. Taken together, the �rst and second derivative signals reveal much

of the local signal structure. Figure 5.13 shows how smoothing of signals can be put into
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the same framework as di�erencing: the boxed table below compares the general properties

of smoothing versus di�erencing masks.

Some properties of derivative masks follow:

� Coordinates of derivative masks have opposite signs in order to obtain a high response

in signal regions of high contrast.

� The sum of coordinates of derivative masks is zero so that a zero response is obtained

on constant regions.

� First derivative masks produce high absolute values at points of high contrast.

� Second derviatve masks produce zero-crossings at points of high contrast.

For comparison, smoothing masks have these properties:

� Coordinates of smoothing masks are positive and sum to one so that output on con-

stant regions is the same as the input.

� The amount of smoothing and noise reduction is proportional to the mask size.

� Step edges are blurred in proportion to the mask size.

5.6.2 Di�erence Operators for 2D Images

Contrast in the 2D picture function f(x; y) can occur in any direction. From calculus, we

know that the maximum change occurs along the direction of the gradient of the function,

which is in the direction [@f
@x
; @f
@y
] in the picture plane. Figure 5.14 shows that this is quite

intuitive when one considers discrete approximations in digital images. We can estimate the

contrast at image location I[x; y] along the x-direction by computing (I[x + 1; y] � I[x �
1; y])=2, which is the change in intensity across the left and right neighbors of pixel [x,y]

divided by �x = 2 pixel units. For the neighborhood shown in Figure 5.14, the constrast

in the x direction would be estimated as (64� 14)=2 = 25. Since our pixel values are noisy

and since the edge might actually cut across the pixel array at any angle, it should help to

average 3 di�erent estimates of the contrast in the neighborhood of [x,y]:

@f=@x � fx � 1
3
[ (I[x+ 1; y]� I[x� 1; y])=2

+ (I[x+ 1; y � 1]� I[x� 1; y � 1])=2

+ (I[x + 1; y + 1]� I[x� 1; y + 1])=2) ] (5.9)

This estimates the contrast in the x-direction by equally weighting the contrast across

the row y with the row below and above it. The contrast in the y-direction can be estimated

similarly:

@f=@y � fy � 1
3
[ (I[x; y + 1]� I[x; y � 1])=2

+ (I[x� 1; y + 1]� I[x� 1; y � 1])=2

+ (I[x+ 1; y + 1]� I[x+ 1; y � 1])=2) ] (5.10)
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mask M = [�1;2;�1]

S1 12 12 12 12 12 24 24 24 24 24

S1 
 M 0 0 0 0 -12 12 0 0 0 0

(a) S1 is an upward step edge

S2 24 24 24 24 24 12 12 12 12 12

S2 
 M 0 0 0 0 12 -12 0 0 0 0

(b) S2 is a downward step edge

S3 12 12 12 12 15 18 21 24 24 24

S3 
 M 0 0 0 -3 0 0 0 3 0 0

(c) S3 is an upward ramp

S4 12 12 12 12 24 12 12 12 12 12

S4 
 M 0 0 0 -12 24 -12 0 0 0 0

(d) S4 is a bright impulse or \line"

Figure 5.12: Cross correlation of four special signals with second derivative edge detecting

mask M = [�1;2;�1]; (a) upward step edge, (b) downward step edge, (c) upward ramp,

and (d) bright impulse. Since the coordinates of M sum to zero, response on constant

regions is zero. Note how a zero-crossing appears at an output position where di�erent

trends in the input signal join.
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box smoothing mask M = [1=3;1=3;1=3]

S1 12 12 12 12 12 24 24 24 24 24

S1 
 M 12 12 12 12 16 20 24 24 24 24

(a) S1 is an upward step edge

S4 12 12 12 12 24 12 12 12 12 12

S4 
 M 12 12 12 16 16 16 12 12 12 12

(d) S4 is a bright impulse or \line"

Gaussian smoothing mask M = [1=4;1=2;1=4]

S1 12 12 12 12 12 24 24 24 24 24

S1 
 M 12 12 12 12 15 21 24 24 24 24

(a) S1 is an upward step edge

S4 12 12 12 12 24 12 12 12 12 12

S4 
 M 12 12 12 15 18 15 12 12 12 12

(d) S4 is a bright impulse or \line"

Figure 5.13: (Top two rows) Smoothing of step and impulse with box mask [1=3; 1=3; 1=3];

(bottom two rows) smoothing of step and impulse with Gaussian mask [1=4; 1=2; 1=4].
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f

2

θ  -1

=  42 degrees

f  = ( (38-12)/2 + (66-15)/2 
  + (65-42)/2 ) / 3

1/22

=  tan   (16 / 18) = 0.727 rad

|    f  |  =  ( 16   +   18  )     =  24

f  = ( (65-38)/2 + (64-14)/2 
+ (42-12)/2 ) / 3

x

lower
intensities

higher  intensities
= ( 13 + 25 + 11 ) / 3 = 16

= ( 13 + 25 + 15 ) / 3 = 18

f x

Figure 5.14: Estimating the magnitude and direction of contrast at I[x,y] by estimating the

gradient magnitude and direction of picture function f(x; y) using the discrete samples in

the image array.

Often, the division by 6 is ignored to save computation time, resulting in scaled estimates.

Masks for these two contrast operators are denoted byMx and My at the top of Figure 5.15.

The gradient of the picture function can be estimated by applying the masks to the 8-

neighborhood N8[x; y] of pixel [x; y] as given in Equations 5.11 to 5.14. These masks de�ne

the Prewitt operator credited to Dr Judith Prewitt who used them in detecting boundaries

in biomedical images.

@f

@x
� (1=6)(Mx �N8[x; y]) (5.11)

@f

@y
� (1=6)(My �N8[x; y]) (5.12)

j rf j �

s
@f

@x

2

+
@f

@y

2

(5.13)

� � tan�1(
@f

@y
=
@f

@x
) (5.14)

The operation M � N is de�ned formally in the next section: operationally, mask M is

overlaid on image neighborhood N so that each intensity Nij can be multiplied by weight

Mij ; �nally all these products are summed. The middle row of Figure 5.15 shows the two

analogous Sobel masks; their derivation and interpretation is the same as for the Prewitt

masks except that the assumption is that the center estimate should be weighted twice as

much as the estimate to either side.

The Roberts masks are only 2x2; hence they are both more e�cient to use and more lo-

cally applied. Often referred to as the Roberts cross operator, these masks actually compute

a gradient estimate at the center of a 4-neighborhood and not at a center pixel. More-

over, the actual coordinate system in which the operator is de�ned is rotated 45� o� the

standard row direction. Application of the Roberts cross operator is shown in Figure 5.16:
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Prewitt: Mx =

-1 0 1

-1 0 1

-1 0 1

; My =

1 1 1

0 0 0

-1 -1 -1

Sobel: Mx =

-1 0 1

-2 0 2

-1 0 1

; My =

1 2 1

0 0 0

-1 -2 -1

Roberts: Mx =
0 1

-1 0
; My =

1 0

0 -1

Figure 5.15: 3x3 masks used to estimate the gradient of picture function f(x; y): (top row)

Prewitt; (middle row) Sobel; (bottom row) Roberts.

the original input image is shown in the upper left, while the highest 10% of the responses

of the operator are shown at the lower left. Qualitatively, these results are typical of the

several small-neighborhood operators { many pixels on many edges are detected but some

gaps exist. Also, there are strong responses on the highly textured regions corresponding

to plants. The Roberts results should be compared to the results obtained by combining

the simple 1D row and column masks shown in Figure 5.16(b-d) and (f-h). It is common

to avoid computing a square root in order to compute gradient magnitude; alternatives are

max( j @f
@x
j ; j @f

@y
j ), j @f

@x
j + j @f

@y
j , or (@f

@x

2
+ @f

@y

2
)=2. With these estimates, one must

be careful when trying to interpret the actual gradient or gradient direction. Figure 5.17(b)

shows the results of using the Sobel 3x3 operator to compute mean square gradient mag-

nitude and Figure 5.17(c) shows an encoding of the gradient direction. The small squares

in the original image are 8x8 pixels: the Sobel operator represents many, but not all, of the

image edges.

Exercise 8

If a true gradient magnitude is needed, why might the Sobel masks provide a faster solution

than the Prewitt masks?

Exercise 9 *Optimality of Prewitt masks

The problem is to prove that Prewitt masks give the weights for the best �tting plane

approximating the intensity surface in a 3 � 3 neighborhood, assuming all 9 samples have

equal weight. Suppose that the 9 intensities I[r + i; c + j]; i; j = �1; 0; 1 of a 3 � 3 image

neighborhood are �t by the least squares planar model I[r; c] = z = pr+ qc+ z0. (Recall

that the 9 samples are equally spaced in terms of r and c.) Show that the Prewitt masks

compute the estimates of p and q as the partial derivatives of the least squares planar �t of

the intensity function.

Figure 5.18 (top) shows plots of the intensites of two rows of the room scene at the

left. The lower row cuts across four dark regions as seen in the image and the plot; (1)

the coat on the chair at the left (columns 20 to 80), (2) Dr Prewitt's chair and dress in the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.16: (a) Original house image; (b) top 5% of the responses from horizontal edge

mask [+1;�1] t; (c) top 5% of the responses from horizontal edge mask [�1;+1] t; (d)

images of (b) and (c) ORed together; (e) top 10% of the sum of the absolute values of

the two Roberts mask responses; (f) top 5% of the responses from the vertical edge mask

[�1;+1]; (g) top 5% of the responses from the vertical edge mask [+1;�1]; (h) images (f)

and (g) ORed together.

center (columns 170 to 240), (3) the shadow of the rightmost chair (columns 360 to 370)

and (4) the electric wires (column 430). Note that the transitions between dark and bright

are sharp except for the boundary between the chair and its shadow, which ramps down

from brightness 220 to 20 over about 10 pixels. The upper row pro�le, shown at the top

right, shows sharp transitions where it cuts across the picture frames, mat, and pictures.

The picture at the left shows much more intensity variation than the one at the right. The

bottom row of Figure 5.18 shows the results of applying the 3x3 Prewitt gradient operator

to the original image. The sum of the absolute values of the column and row gradients

fx and fy is plotted for the same two image rows shown at the top of the �gure. The

highest values of the Prewitt operator correspond well with the major boundaries crossed;

however, the several medium level spikes from Dr Prewitt's chair between columns 170

and 210 are harder to interpret. The contrasts in the upper row, graphed at the bottom

right, are interpeted similarly { major object boundaries correspond well to the object

boundaries of the picture frame and mat; however, there is a lot of intensity variation in

the leftmost picture. Generally, gradient operators work well for detecting the boundary

of isolated objects, although some problems are common. Boundaries sometimes drop out

due to object curvature or soft shadows: on the other hand, good contrast often produces

boundaries that are several pixels wide, necessitating a thinning step afterward. Gradient

operators will also respond to textured regions, as we shall study in more detail in Chapter

7.
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(a) (b) (c)

Figure 5.17: (a) Image of noisy squares and rings; (b) mean square response of 3x3 Sobel

operator; (c) coding of gradient direction computed by 3x3 Sobel operator.
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(d) (e) (f)

Figure 5.18: (a) Image of Judith Prewitt with two rows selected; (b) plot of intensities along

selected lower row; (c) plot of intensities along selected upper row; (d) \gradient image"

showing result of j fx j + j fy j using the Prewitt 3x3 operator; (e) plot of selected lower

row of gradient image; (f) plot of selected upper row of gradient image.
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5.7 Gaussian Filtering and LOG Edge Detection

The Gaussian function has important applications in many areas of mathematics, including

image �ltering. In this section, we highlight the characteristics that make it useful for

smoothing images or detecting edges after smoothing.

8 Definition AGaussian function of one variable with spread � is of the following form,
where c is some scale factor.

g(x) = ce�
x2

2�2 (5.15)

A Gaussian function of two variables is

g(x; y) = ce�
(x2+y2)

2�2 (5.16)

These forms have the same structure as the normal distribution de�ned in Chapter 4,

where the constant c was set so that the area under the curve would be 1. To create a mask

for �ltering, we usually make c a large number so that all mask elements are integers. The

Gaussian is de�ned centered on the origin and thus needs no location parameter � as does

the normal distribution: an image processing algorithm will translate it to wherever it will

be applied in a signal or image. Figure 5.19 plots the Gaussian of one variable along with its

�rst and second derivatives, which are also important in �ltering operations. The derivation

of these functions is given in Equations 5.17 to 5.22. The area under the function g(x) is 1,

meaning that it is immediately suitable as a smoothing �lter that does not a�ect constant

regions. g(x) is a positive even function; g0(x) is just g(x) multiplied by odd function �x
and scaled down by �2. More structure is revealed in g00(x). Equation 5.21 shows that g00(x)
is the di�erence of two even functions and that the central lobe will be negative with x � 0.

Using Equation 5.22, it is clear that the zero crossings of the second derviative occur at

x = ��, in agreement with the plots in Figure 5.19.

g(x) =
1p
2� �

e�
x2

2�2 (5.17)

g0(x) =
�1p
2� �3

xe�
x2

2�2 (5.18)

=
�x
�2

g(x) (5.19)

g00(x) = (
x2p
2� �5

� 1p
2� �3

) e�
x2

2�2 (5.20)

=
x2

�4
g(x) � 1

�2
g(x) (5.21)

= (
x2

�4
� 1

�2
) g(x) (5.22)

Understanding the properties of the 1D Gaussian, we can now intuitively create the corre-

sponding 2D function g(x; y) and its derivatives by making the substitution r =
p
x2 + y2.

This creates the 2D forms by just spinning the 1D form about the vertical axis yielding

isotropic functions which have the same 1D Gaussian cross section in any cut through the

origin. The second derivative form is well known as a sombrero or Mexican hat. From
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2nd derivative of Gaussian with mean 0 and standard deviation 2

g2(x)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-10 -5 0 5 10

Gaussian g(x): sigma=2, and 1st and 2nd derivatives

g(x)
g1(x)
g2(x)

(c) (d)

Figure 5.19: (a) Gaussian g(x) with spread � = 2; (b) �rst derivative g0(x); (c) second
derivative g00(x), which looks like the cross section of a sombrero upside down from how it

would be worn; (d) all three plots superimposed to show how the extreme slopes of g(x)

align with the extremas of g0(x) and the zero crossings of g00(x).

the mathematical derivations, the cavity for the head will be pointed upward along the

z = g(x; y) axis; however, it is usually displayed and used in �ltering with the cavity pointed

downward, or equivalently, with the center lobe positive and the rim negative.
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G3�3 =
1 2 1

2 4 2

1 2 1

; G7�7 =

1 3 7 9 7 3 1

3 12 26 33 26 12 3

7 26 55 70 55 26 7

9 33 70 90 70 33 9

7 26 55 70 55 26 7

3 12 26 33 26 12 3

1 3 7 9 7 3 1

Figure 5.20: (Left) A 3�3 mask approximatinga Gaussian obtained by matrixmultiplication

[1; 2; 1]t
 [1; 2; 1]; (Right) a 7� 7 mask approximating a Gaussian with �2 = 2 obtained by

using Equation 5.16 to generate function values for integers x and y and then setting c = 90

so that the smallest mask element is 1.

Some Useful Properties of Gaussians

1. Weight decreases smoothly to zero with distance from the origin, meaning

that image values nearer the central location are more important than values

that are more remote; moreover, the spread parameter � determines how

broad or focused the neighborhood will be. 95% of the total weight will be

contained within 2� of the center.

2. Symmetry about the abscissa; ipping the function for convolution produces

the same kernel.

3. Fourier transformation into the frequency domain produces another Gaus-

sian form, which means convolution with a Gaussian mask in the spatial

domain reduces high frequency image trends smoothly as spatial frequency

increases.

4. The second derivative of a 1D Gaussian g00(x) has a smooth center lobe of

negative area and two smooth side lobes of positive area: the zero crossings

are located at �� and +�, corresponding to the inection points of g(x) and

the extreme points of g0(x).

5. A second derivative �lter based on the Laplacian of the Gaussian is called

a LOG �lter. A LOG �lter can be approximated nicely by taking the

di�erence of two Gaussians g00(x) � c1e
� x2

2�1
2 � c2e

� x
2

2�2
2 , which is often

called a DOG �lter (for Di�erence Of Gaussians). For a positive center

lobe, we must have �1 < �2; also, �2 must be carefully related to �1 to

obtain the correct location of zero crossings and so that the total negative

weight balances the total positive weight.

6. The LOG �lter responds well to intensity di�erences of two kinds { small

blobs coinciding with the center lobe, and large step edges very close to the

center lobe.

Two di�erent masks for Gaussian smoothing are shown in Figure 5.20. Masks for edge

detection are given below.
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- 0 -5 -5 -5 -

- -5 10 5 5 -

- -5 10 0 0 -

- 0 -10 10 0 -

- - - - - -

Figure 5.21: (Top row) Cross section of the LOG �lter and a 3� 3 mask approximating it;

(bottom row) input image and result of applying the mask to it.

5.7.1 Detecting Edges with the LOG Filter

Two di�erent masks implementating the LOG �lter are given in Figures 5.21 and 5.22. The

�rst is 3 � 3 mask: the smallest possible implementation, detects image details nearly the

size of a pixel. The 11�11 mask computes a response by integrating the input of 121 pixels

and thus responds to larger image features and not smaller ones. Integrating 121 pixels can

take a lot more time than integrating 9 of them done in software.

Exercise 10 Properties of the LOG �lter

Suppose that the 9 intensities of a 3� 3 image neighborhood are perfectly �t by the planar

model I[r; c] = z = pr + qc+ z0. (Recall that the 9 samples are equally spaced in terms

of r and c.) Show that the simple LOG mask

0 -1 0

-1 4 -1

0 -1 0

has zero response on such a

neighborhood. This means that the LOG �lter has zero response on both constant regions

and ramps.

5.7.2 On Human Edge-Detection

We now describe an arti�cial neural network (ANN) architecture which implements the LOG

�ltering operation in a highly parallel manner. The behavior of this network has been shown
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0 0 0 -1 -1 -2 -1 -1 0 0 0

0 0 -2 -4 -8 -9 -8 -4 -2 0 0

0 -2 -7 -15 -22 -23 -22 15 -7 -2 0

-1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1

-1 -8 -22 -14 52 103 52 -14 -22 -8 -1

-2 -9 -23 -1 103 178 103 -1 -23 -9 -2

-1 -8 -22 -14 52 103 52 -14 -22 -8 -1

-1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1

0 -2 -7 -15 -22 -23 -22 15 -7 -2 0

0 0 -2 -4 -8 -9 -8 -4 -2 0 0

0 0 0 -1 -1 -2 -1 -1 0 0 0

Figure 5.22: An 11 � 11 mask approximating the Laplacian of a Gaussian with �2 = 2.

(From Harlalick and Shapiro, Volume I, page 349.)

-1 +2 -1 

b ca

-a +2b -c
   = out

intensity  20

intensity  30

0 0 0 -10 +10 0 0 0

level 1

level 2

g

g

g
g

intensity  0 intensity  0

difference  is  now  20

Figure 5.23: Producing the Mach band e�ect using an ANN architecture. Intensity is sensed

by cells of the retina (level 1) which then stimulate integrating cells in a higher level layer

(level 2).

Figure 5.24: Seven constant stripes generated with grey levels 31 + 32k; k = 1; 7. Due to

the Mach band e�ect, humans perceive scalloped, or concave, panels.
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Figure 5.25: A 3D ANN architecture for LOG �ltering.

to simulate some of the known behaviors of the human visual system. Moreover, invasive

techniques have also shown that the visual systems of cats and monkeys produce electrical

signals consistent with the behavior of the neural network architecture. Figure 5.23 shows

the processing of 1D signals. A step edge is sensed at various points by cells of the retinal

array. These level 1 cells stimulate the integrating cells at level 2. Each physical connection

between level 1 cell i and level 2 cell j has an associated weight wij which is multiplied

by the stimulus being communicated before it is summed in cell j. The output of cell j is

yj =
PN

i=1wijxi where xi is the output of the i-th �rst level cell and N is the total number

of �rst level cells. (Actually, we need only account for those cells i directly connected to the

second level cell j). By having the weights associated with each connection, it is possible,

and common, to have the same cell i give positive input to cell j and negative input to

cell k 6= j. Figure 5.23 shows that each cell j of the second level computes its output as

�a + 2b � c, corresponding to the mask [�1; 2;�1]: the weight 2 is applied to the central

input, while the (inhibitory) inputs a and b are each weighted by -1.

This kind of architecture can be de�ned for any kind of mask and permits a highly par-

allel implementation of cross correlation for �ltering or feature detection. The psychologist

Mach noted that humans perceive an edge between two regions as if it were pulled apart

to exaggerate the intensity di�erence, as is done in Figure 5.23. Note that this architecture

and mask create the zero crossing at the location of the edge between two cells, one of which

produces positive output and the other negative output. The Mach band e�ect changes the

perceived shape of joining surfaces and is evident in computer graphics systems that display

polyhedral objects via shaded faces. Figure 5.24 shows seven constant regions, stepping

from grey level 31 to 255 in steps of 32. Do you perceive concave panels in 3D such as on a

Doric column from a Greek temple?

Figure 5.25 extends Figure 5.23 to 2D images. Each set of retinal cells connected to

integrating cell j comprise what is called the receptive �eld of that cell. To perform edge

detection via a second derivative operation, each receptive �eld has a center set of cells
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which have positive weights wij with respect to cell j and a surrounding set of cells with

negative weights. Retinal cells b and c are in the center of the receptive �eld of integrat-

ing cell A, whereas retinal cells a and d are in the surround and provide inhibitory input.

Retinal cell d is in the center of the receptive �eld of integrating cell B, however, and cell

c is in its surround. The sum of the weights from the center and the surround should be

zero so that the integrating cell has neutral output on constant regions. Because the center

and surround are circular, output will not be neutral whenever a straight region boundary

just nips the center area, regardless of the angle. Thus, each integrating cell is an isotropic
edge detector cell. Additionally, if a small region contrasting with the background images

within the center of the receptive �eld the integrating cell will also respond, making it a spot

detector as well. Figure 5.21 shows the result of convolving the smallest of the LOG masks

with an image containing two regions. The result at the right of the �gure shows how the

operation determines the boundary between the regions via zero crossings. An 11�11 mask

corresponding to the Laplacian of a Gaussian with �2 = 2 is shown in Figure 5.22. The

tiny mask is capable of �nding the boundary between tiny regions and is sensitive to high

curvature bouundaries but will also respond to noise texture. The larger mask performs a

lot of smoothing and will only respond to boundaries between larger regions with smoother

perimeter.

Exercise 11
Give more detailed support to the above arguments that the integrating cells shown in

Figure 5.25 (a) respond to contrasting spots or blobs that image within the center of the

�eld and (b) respond to boundaries between two large regions that just barely cross into

the center of the �eld.

5.7.3 Marr-Hildreth Theory

David Marr and Ellen Hildreth proposed LOG �ltering to explain much of the low level

behavior of human vision. Marr proposed that the objective of low level human visual

processing was the construction of a primal sketch which was a 2D description containing

lines, edges, and blobs. (The primal sketches derived from the two eyes would then be

processed further to derive 3D interpretations of the scene.) To derive a primal sketch, Marr

and Hildreth proposed an organization based on LOG �ltering with 4 or 5 di�erent spreads

�. The mathematical properties outlined above explained the results of both perceptual

experiments on humans and invasive experiments with animals. LOG �lters with large �

would detect broad edges while those with small � would focus on small detail. Coordination

of the output from the di�erent scales could be done at a higher level, perhaps with the large

scale detections guiding those at the small scale. Subsequent work has produced di�erent

practical scale space methods of integrating output from detectors of di�erent sizes.

Figure 5.26 shows an image processed at two di�erent levels of Gaussian smoothing. The

center image shows good representation of major objects and edges, whereas the rightmost

image shows both more image detail and more noise. Note that the ship and part of the

sand/water boundary is represented in the rightmost image but not in the center image.

Marr's primal sketch also contained descriptions of virtual lines, which are formed by similar

detected features organized along an image curve. These might be the images of a dotted

line, a row of shrubs, etc. A synthetic image containing a virtual line is shown in Figure 5.27
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original smoothed � = 4 smoothed � = 1

Figure 5.26: An input image (a) is smoothed using Gaussian �lters of size (b) � = 4 and

(c) � = 1 before performing edge detection. More detail and more noise is shown for the

smaller �lter (photo by David Sha�er 1998).

Figure 5.27: (Left) A virtual line formed by the termination points of a line texture {

perhaps this is two pieces of wrapping paper overlaid; (center) output from a speci�c 4� 4

LOG �lter responds to both lines and endpoints; (right) a di�erent 3�3 LOG �lter responds

only to the endpoints.

along with the output of two di�erent LOG �lters. Both LOG �lters give a response to the

ends of the stripes; one is sensitive to the edges of the stripes as well, but the other is

not. Figure 5.28 shows the same principle in a real image that was thresholded to obtain

an artistic texture. Recent progress in researching the human visual system and brain has

been rapid: results seem to complicate the interpretations of earlier work on which Marr

and Hildreth based their mathematical theory. Nevertheless, use of variable-sized Gaussian

and LOG �lters is �rmly established in computer vision.

5.8 The Canny Edge Detector

The Canny edge detector is a very popular and e�ective operator, and it is important to

introduce it here, although details are placed in Chapter 10. The Canny operator �rst

smoothes the intensity image and then produces extended contour segments by following

high gradient magnitudes from one neighborhood to another. Figure 5.29 shows edge de-

tection in fairly di�cult outdoor images. The contours of the arch of St. Louis are detected
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Figure 5.28: Picture obtained by thresholding: object boundaries are formed by virtual

curves formed by the ends of stripes denoting cross sections of generalized cylinders. (Orig-

inal photo by Eleanor Harding.

quite well in Figure 5.29: using a parameter of � = 1 detects some of the metal seams of

the arch as well as some internal variations in the tree, whereas use of � = 4 detects only

the exterior boundaries of these objects. As shown in the bottom row of Figure 5.29, the

operator isolates many of the texture elements of the checkered ags. For comparison, use

of the Roberts operator with a low threshold on gradient magnitude is shown: more texture

elements of the scene (grass and fence) are evident, although they have less structure than

those in the Canny output. The algorithm for producing contour segments is treated in

detail in Chapter 10.

5.9 *Masks as Matched Filters

Here we give a theoretical basis for the concept that the response of a mask to a certain

image neighborhood is proportional to how similar that neighborhood is to the mask. The

important practical result of this is that we now know how to design masks to detect speci�c

features { we just design a mask that is similar to the feature[s] we want to detect. This will

serve us well in both edge and texture detection and also in detecting other special patterns

such as holes or corners. We introduce the concepts using 1-dimensional signals, which are

important in their own right, and which might correspond to rows or columns or any other

cut through a 2D image. The concepts and mathematical theory immediately extend to the

2D case.

5.9.1 The Vector Space of all Signals of n Samples

For a given n � 1, the set of all vectors of n real coordinates forms a vector space. The

practical and powerful vector space operations which we use are summarized below. The

reader has probably already worked with vectors with n = 2 or n = 3 when studying
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Figure 5.29: (Top left) Image of the great arch at St Louis; (top center) results of Canny

operator with � = 1; ( top right) results of Canny operator with � = 4; (bottom left) image

with textures; (bottom center) results of Canny operator with � = 1; (bottom right) results

of Roberts operator thresholded to pass the top 20% of the pixels in gradient magnitude.

analytical geometry or calculus. For n = 2 or n = 3, the notion of vector length is the same

as that used in plane geometry and 3D analytical geometry since Euclid. In the domain of

signals, length is related to energy of the signal, de�ned as the squared length of the signal,

or equivalently, just the sum of the squares of all coordinates. Signal energy is an extremely

useful concept as will be seen.

9 Definition The energy of signal S = [s1; s2; :::; sn] is k S k2 = s1
2 + s2

2 + : : :+ sn
2.

Note that in many applications, the full range of real-valued signals do not arise because

negative values are impossible for the coordinates. For example, a 12-dimensional vector

recording the rainfall at a particular location for each of the 12 months should have no

negative coordinates. Similarly, intensities along an image row are commonly kept in a

non-negative integer range. Nevertheless, the vector space interpretation is still useful, as

we shall see. Often, the mean signal value is subtracted from all coordinates in making an

interpretation, and this shifts about half of the coordinate values below zero. Moreover, it

is quite common to have negative values in masks, which are templates or models of the

shape of parts of signals.
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Basic de�nitions for a vector space with a de�ned vector length.

Let U and V be any two vectors; ui and vi be real numbers denoting the coordi-

nates of these vectors; and let a; b; c; etc. be any real numbers denoting scalars.

10 Definition For vectors U = [u1; u2; :::; un] and V = [v1; v2; :::vn] their vector
sum is the vector U � V = [u1 + v1; u2 + v2; :::; un+ vn].

11 Definition For vector V = [v1; v2; :::vn] and real number (scalar) a the prod-
uct of the vector and scalar is the vector aV = [av1; av2; :::; avn].

12 Definition For vectors U = [u1; u2; :::; un] and V = [v1; v2; :::; vn] their dot
product, or scalar product is the real number U �V = u1v1+u2v2+:::+unvn.

13 Definition For vector V = [v1; v2; :::vn] its length, or norm, is the non-

negative real number k V k = V � V = (v1v1 + v2v2 + :::+ vnvn)
1=2.

14 Definition Vectors U and V are orthogonal if and only if U � V = 0.

15 Definition The distance between vectors U = [u1; u2; :::; un] and V =

[v1; v2; :::vn] is the length of their di�erence d(U; V ) = k U � V k.

16 Definition A basis for a vector space of dimension n is a set of n vectors f
w1; w2; :::; wn g that are independent and that span the vector space. The spanning
property means that any vector V can be expressed as a linear combination of basis
vectors: V = a1w1 � a2w2 � :::� anwn. The independence property means that
none of the basis vectors wi can be represented as a linear combination of the
others.

Properties of vector spaces that follow from the above de�nitions.

1. U � V = V � U

2. U � (V �W ) = (U � V ) �W

3. There is a vector O such that for all vectors V; O � V = V

4. For every vector V , there is a vector (�1)V such that V � (�1)V = O

5. For any scalars a; b and any vector V; a(bV ) = (ab)V

6. For any scalars a; b and any vector V; (a+ b)V = aV � bV

7. For any scalar a and any vectors U; V; a(U � V ) = aU � aV

8. For any vector V; 1V = V

9. For any vector V; (�1V ) � V = �k V k2
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Exercise 12
Choose any 5 of the 9 listed properties of vector spaces and show that each is true.

5.9.2 Using an Orthogonal Basis

Two of the most important results of the study of vector spaces are that (1) every vector can

be expressed in only one way as a linear combination of the basis vectors, and (2) any set

of basis vectors must have exactly n vectors. Having an orthogonal basis allows us a much
stronger interpretation of the representation of any vector V as is shown in the following

example.

Example of representing a signal as a combination of basis signals.

Consider the vector space of all n = 3 sample signals [v1; v2; v3]. Represented in terms

of the standard basis, any vector V = [v1; v2; v3] = v1[1; 0; 0] � v2[0; 1; 0]� v3[0; 0; 1].

The standard basis vectors are orthogonal and have unit length; such a set is said to be

orthonormal. We now study a di�erent set of basis vectors fw1; w2; w3g, where w1 =

[�1; 0; 1], w2 = [1; 1; 1], and w3 = [�1; 2;�1]. Any two of the basis vectors are orthogonal,
since wi �wj = 0 for i 6= j (show this). Scaling these to unit length, yields the new basis

f 1p
2
[�1; 0; 1]; 1p

3
[1; 1; 1]; 1p

6
[�1; 2;�1]g.

Now represent the signal S = [10; 15; 20] in terms of the orthogonal basis.

[10; 15; 20] is relative to the standard basis.

S �w1 =
1p
2
(�10 + 0 + 20)

S �w2 =
1p
3
(10 + 15 + 20)

S �w3 =
1p
6
(�10 + 30� 20)

S = (S �w1)w1 � (S �w2)w2 � (S �w3)w3

S = (10=
p
2)w1 � (45=

p
3)w2 � 0w3

k S k2 = 100+ 225+ 400 = 725

= (10=
p
2)2 + (45=

p
3)2 + 02 = 725

(5.23)

The last two equations show that when an orthonormal basis is used, it is easy to account

for the total energy by summing the energy associated with each basis vector.

The example above showed how to represent the signal [10; 15; 20] in terms of a basis of

three given vectors fw1; w2; w3g, which have special properties as we have seen. In general,

let any signal S = [a1; a2; a3] = a1w1 � a2w2 � a3w3. Then S � wi = a1(w1 � wi) �
a2(w2 �wi) � a3(w3 � wi) = ai(wi � wi) = ai, since wi �wj is 0 when i 6= j and 1 when

i = j. So, it is very convenient to have an orthonormal basis: we can easily account for the

energy in a signal separately in terms of its energy components associated with each basis

vector. Suppose we repeat the above example using the signal S2 = [�5; 0; 5], which can be

obtained by subtracting the mean signal value of S; S2 = S�(�1[15; 15; 15]). S2 is the same
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as S �w1 since the component along [1; 1; 1] has been removed. S2 is just a scalar multiple

of w1: S2 = (10=
p
2)w1 = (10=

p
2)((1=

p
2))[�1; 0; 1] = [�5; 0; 5] and we will say that S2

has the same pattern as w1. If w1 is taken to be a �lter, then it matches the signal S2 very

well; in some sense, it also matches the signal S very well. We will explore this idea further,

but before moving on, we note that there are many di�erent useful orthonormal bases for

an n-dimensional space of signal vectors.

Exercise 13

(a) Following the boxed example above, represent the vector [10; 14; 15] in terms of the

basis f 1p
2
[�1; 0; 1]; 1p

3
[1; 1; 1]; 1p

6
[�1; 2;�1]g. (b) Now represent [10; 19; 10]: to which

basis vector is it most similar? Why?

From the properties of vectors and the dot product, the Cauchy-Schwartz Inequality of
Equation 5.24 is obtained. Its basic meaning is that the dot product of unit vectors must

lie between -1 and 1. Thus we have a ready measure to determine the similarity between

two vectors: note that if U = V , then +1 is obtained and if U = �V , then -1 is obtained.

The normalized dot product is used to de�ne the angle between two vectors. This angle is

the same angle that one can compute in 2D or 3D space using trigonometry. For n � 3 the

angle, or its cosine, is taken to be an abstract measure of similarity between two vectors; if

their normalized dot product is 0, then they are dissimilar; if it is 1, then they are maximally

similar scaled versions of each other; if it is -1, then one is a negative scaled version of the

other, which may or may not be similar, depending on the problem domain.

5.9.3 Cauchy-Schwartz inequality

For any two nonzero vectors U and V; �1 � U � V
k U k k V k � +1 (5.24)

17 Definition Let U and V be any two nonzero vectors, then the normalized dot prod-

uct of U and V is de�ned as ( U�V
kUk kV k )

18 Definition Let U and V be any two nonzero vectors, then the angle between U and
V is de�ned as cos�1( U�V

kUk kV k)

Exercise 14
Sketch the following �ve vectors and compute the normalized dot product, or cos of the angle

between each pair of the vectors: [5; 5]; [10; 10]; [�5; 5]; [�5;�5]; [�10; 10]. Which pairs

are perpendicular? Which pairs have the same direction? Which have opposite directions?

Compare the relative directions to value of the normalized dot product.

5.9.4 The Vector Space of m� n Images

The set of all m�n matrices with real-valued elements is a vector space of dimensionm�n.
Here we interpret the vector space theory in terms of masks and image regions and show
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how it applies. In this section, our model of an image is that of an image function over

a discrete domain of m � n sample points I[x; y]. We work mainly with 2 � 2 and 3 � 3

matrices, but everything easily generalizes to images or masks of any size.

5.9.5 A Roberts basis for 2 � 2 neighborhoods

The structure of a 2 � 2 neighborhood of an intensity image can be interpreted in terms

of the basis shown in Figure 5.30, which we shall call the Roberts basis. Two of the four

basis vectors were shown in Figure 5.15. As the exercise below shows, any 2� 2 neighbor-

hood of real intensity values can be expressed uniquely as a sum of these four basis vectors,

each scaled as needed. The relative size of the scale factor directly indicates the amount of

similarity between the image neighborhood and that basis vector and thus can be used to

interpret the neighborhood structure. Several examples are given in Figure 5.30.

Exercise 15
Verify that the Roberts basis vectors shown in Figure 5.30 are orthonormal.

Exercise 16

Consider the vector space of all 2x2 images with real-valued pixels. (a) Determine the

values of the aj so that the image
10 5

5 0
is represented as a linear combination of the

four Roberts basis images Wj . (b) Explain why we can always �nd unique aj for any such

2x2 image.

Exercise 17

Suppose that the 2x2 image
a b

c d
has energy e1; e2; e3; e4 along the respective four

Roberts basis vectors W1;W2;W3;W4 respectively. What are the formulas for computing

the four e1 in terms of a; b; c; d?

5.9.6 The Frei-Chen basis for 3x3 neighborhoods

Usually, masks used for image processing are 3 � 3 or larger. A standard basis for 3 � 3

image neighborhoods is given in Figure 5.31. One advantage of the standard basis is that it

is obvious how to expand any image neighborhood using this basis. However, the obvious

expansion tells nothing about the 2D structure of the neighborhood. The Frei-Chen basis,

shown in Figure 5.32, consists of a set of orthonormal masks which enable simple interpre-

tation of the structure of the 3� 3 neighborhood.

Representation of an image neighborhood in terms of the Frei-Chen basis allows intepre-

tation of the energy as gradient, ripple, line, etc. Energy will be high when the intensity

structure is similar to a basis vector, or mask. Each of the basis vectors has a specially



Shapiro and Stockman 37

Roberts basis: W1 =
1
2

1 1

1 1
W2 =

1p
2

0 1

-1 0
W3 =

1p
2

+1 0

0 -1
W4 =

1
2

-1 1

1 -1

Constant region:
5 5

5 5
= 20

2
(1
2

1 1

1 1
) = 10W1 � 0W2 � 0W3 � 0W4

Step Edge:
-1 +1

-1 +1
= 0W1 � 2p

2
W2 � 2p

2
W3 � 0W4

Step Edge:
+1 +1

-3 +1
= 0W1 � 4p

2
W2 � 0W3 � �4

2
W4

Line:
0 8

8 0
= 8W1 � 0W2 � 0W3 � 8W4

Figure 5.30: (Top row) A basis for all 2x2 images which contains the two Roberts gradient

masks; (row 2) constant region is a multiple of the constant image; (row 3) vertical step

edge has energy only along the gradient masks; (row 4) diagonal step edge has most energy

along the matching gradient mask; (row 5) line pattern has energy along constant maskW1

and line mask W4 .

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

...

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

Nine \standard" basis vectors for the space of all 3x3 matrices.

9 5 0

5 0 0

0 0 0

= 9
1 0 0

0 0 0

0 0 0

+5
0 1 0

0 0 0

0 0 0

+5
0 0 0

1 0 0

0 0 0

Figure 5.31: Any 3�3 matrix can be represented as a sum of no more than 9 scaled standard

matrices: (top row) nine basis vectors and (bottom row) representation of an example matrix

in terms of the basis.
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gradient: W1 = 1=
p
8

1
p
2 1

0 0 0

-1 �
p
2 -1

W2 = 1=
p
8

1 0 -1p
2 0 �

p
2

1 0 -1

ripple: W3 = 1=
p
8

0 -1
p
2

1 0 -1

�
p
2 1 0

W4 = 1=
p
8

p
2 -1 0

-1 0 1

0 1 �
p
2

line: W5 = 1=2

0 1 0

-1 0 -1

0 1 0

W6 = 1=2

-1 0 1

0 0 0

1 0 -1

Laplacian: W7 = 1=6

1 -2 1

-2 4 -2

1 -2 1

W8 = 1=6

-2 1 -2

1 4 1

-2 1 -2

constant: W9 = 1=3

1 1 1

1 1 1

1 1 1

Figure 5.32: The Frei-Chen basis for the set of all 3x3 images with real intensity values.

designed structure. The basis vectors W1 andW2 are similar to the Prewitt and Sobel gra-

dient masks, while the basis vectors W7 and W8 are similar to the common 3x3 Laplacian

mask. The line masks will respond strongly to one-pixel wide lines passing through a 3x3

neighborhood, while the two ripple masks model two perpendicular waves with two peaks,

two troughs, and three zero-crossings. The elements of the vectors di�er slightly from the

masks that we formerly designed in isolation because of the requirement that the set be

orthogonal.

Algorithm 2 computes a binary image which detects intensity neighborhood structure

with signi�cant energy in a speci�ed subspace. To detect edges, one could select pixels by

their neighborhood energy along the basis vectors W1; W2, which would be indicated by

setting S = f1; 1; 0; 0; 0;0;0;0; 0g. An example of the calculations projecting the intensity

neighborhood on the Frei-Chen basis vectors is also given below.
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Detect neighborhoods with high energy in a selected subspace.

F[r; c] is an input intensity image; F is unchanged by the algorithm.

S is a bit vector such that S[j] = 1 if and only ifWj is included in the subspace of interest.

thresh is a threshold on the fraction of energy required.

noise is the noise energy level.

G[r; c] is the output image, a binary image where G[r; c] = 1 indicates that F[r; c] has

above threshold energy in the speci�ed subspace S.

procedure detect neighborhoods(F;G;S; thresh; noise);

f
for r := 0 to MaxRow - 1

for c := 0 to MaxCol - 1

f
if [r,c] is a border pixel then G[r; c] := 0;

else G[r; c] := compute using basis ( F; r; c;S; thresh; noise);

g ;
g
procedure compute using basis( IN; r; c; thresh; noise )

f
N[r; c] is the 3x3 neighborhood centered at pixel [r,c] of IN[].

average energy := N[r; c] �W9;

subspace energy := 0.0;

for j := 1 to 8

f
if (S[j]) subspace energy := subspace energy + (N[r; c] �Wj)

2;

g
if subspace energy < noise return 0;

if subspace energy/((N[r; c] �N[r; c])-average energy) < thresh return 0;

else return 1;

g

Algorithm 2: Compute detection image G[r; c] from input image F[r; c] and subspace S.
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Example of representing an intensity neighborhood using the Frei-Chen

basis.

Consider the intensity neighborhood N =

10 10 10

10 10 5

10 5 5

We �nd the component of this vector along each basis vector using the dot product

as before. Since the basis is orthonormal, the total image energy is just the sum

of the component energies and the structure of N can be interpreted in terms of

the components.

N �W1 =
5 + 5

p
2p

8
� 4:3; energy � 18

N �W2 =
5 + 5

p
2p

8
� 4:3; energy � 18

N �W3 = 0; energy = 0

N �W4 =
5
p
2� 10p
8

� �1; energy � 1

N �W5 = 0; energy = 0

N �W6 = 2:5; energy � 6

N �W7 = 2:5; energy � 6

N �W8 = 0; energy = 0

N �W9 = 25; energy = 625

The total energy in N is N � N = 675, 625 of which is explained just by the

average intensity level along W9. The energy along all other components is 50

of which 36, or 72%, is along the gradient basis vectors W1 and W2. Thus, the

neighborhood center would be marked as a detected feature in case the gradient

subspace is of interest.

Exercise 18
Verify that the set of nine vectors shown in Figure 5.32 is an orthonormal set.

Exercise 19

(a) Represent the intensity neighborhood

0 0 1

0 1 0

1 0 0

in terms of the basis vectors shown

in Figure 5.32. Is all the energy distributed along the line basis vectors W5 and W6? (b)

Repeat the question (a) for the intensity neighborhood

0 1 0

0 1 0

0 1 0

.
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Exercise 20

(a) Represent the intensity neighborhood

10 10 10

10 20 10

10 10 10

in terms of the basis vectors shown

in Figure 5.32. Is all the energy distributed along certain basis vectors as you expect? (b)

Would the interpretation of the intensity neighborhood

0 0 0

0 1 0

0 0 0

be di�erent: why or

why not? (c) What kind of image neighborhoods give responses to only W7 and W8?

Exercise 21
Write a program to implement the detection of pixels using the Frei-Chen basis as outlined

in the algorithm above. Allow the user of the program to input the subspace S of interest

as a string of 9 bits. The user should also be able to input the noise energy level and the

threshold determining the minimum energy required in the selected subspace. Test your

program on some real images and also on some test patterns such as those in the exercises

above.

5.10 *Convolution and Cross Correlation

The previous sections showed how many useful detections can be performed by matching

a mask or pattern image to an image neighborhood. Also, we saw that image smoothing

could be put in the same framework. In this section, we give de�nitions for the important

operations of cross correlation and convolution, which formalize the notion of moving a mask

around the image and recording the dot product of the mask with each image neighborhood.

5.10.1 De�ning operations via Masks

We begin by rede�ning simple image smoothing as the cross correlation of the image with

a smoothing mask. A boxcar �lter computes the ouptut image pixel as an equal weighting

of a neighborhood of pixels of the corresponding input image pixel. This is equivalent to

performing a dot product of an m�n image pattern of weights 1
mn

as is shown in Figure 5.33

for a 3 � 3 mask. Assuming that m and n are both odd and the division by 2 ignores the

remainder, Equation 5.25 de�nes the dot product used to compute the value of the output

pixel G[x; y] from input image F [] using mask H[]. In this formulation, mask H is centered

at the origin so that H[0; 0] is the center pixel of the mask: it is obvious how H is used to

weight the pixels from the neighborhood of F[x;y]. An alternate formulation convenient to

compute all output pixels of G results from a simple change of variables in Equation 5.25

yielding Equation 5.26 which can use masks H[] with even dimensions.
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19 Definition The cross correlation of image F [x; y] and mask H[x; y] is de-
�ned as

G[x; y] = F [x; y]
H[x; y]

=

w=2X
i=�w=2

h=2X
j=�h=2

F [x+ i; y + j]H[i; j]

(5.25)

For implementation of this computational formula:

mask H[x; y] is assumed to be centered over the origin, so negative coordinates

make sense;

image F [x; y] need not be centered at the origin;

result G[x; y] must be de�ned in an alternate manner when H[] does not

completely overlap F [].

An alternate formulation does not require a mask with odd dimensions, but

should be viewed as an entire image transformation and not just an operation

centered on pixel G[x; y].

G[x; y] =

w�1X
i=0

h�1X
j=0

F [x+ i; y + j]H[i; j] (5.26)

Exercise 22

Suppose that an image F[] has all 0 pixels except for a single 1 pixel at the image cen-

ter. What output image G[] results from convolving F[] with the 3 � 3 boxcar shown in

Figure 5.33?

Exercise 23

Design a single mask to detect edge elements making an angle of 300 with the X-axis. The

mask should not respond strongly to edge elements of other directions or to other patterns.

Exercise 24 Corner detection

(a) Design a set of four 5� 5 masks to detect the corners of any rectangle aligned with the

image axes. The rectangle can be brighter or darker than the background. (b) Are your

masks orthogonal? (c) Specify a decision procedure to detect a corner and justify why it

would work.

5.10.2 The Convolution Operation

20 Definition The convolution of functions f(x; y) and h(x; y) is de�ned as

g(x; y) = f(x; y) ? h(x; y) �
Z +1

x0=�1

Z +1

y0=�1
f(x0; y0)h(x� x0; y � y0)dx0dy0 (5.27)
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x =

F[r,c]

Input  Image

Mask  overlaid  with
Image  at  [r,c] Mask  or  Kernel

H[-1,-1] H[0,-1]  H[1,-1]

H[-1,0]   H[0,0]    H[1,0]

H[-1,1]   H[0,1]    H[1,1]

G[r,c]

Output  Image

Figure 5.33: Smoothing an image using a 3� 3 boxcar �lter can be viewed as computing a

dot product between every input image neighborhood and a mask (boxcar) that is a small

image of equal values.

Convolution is closely related to cross correlation and is de�ned formally in terms of

continuous picture functions in Equation 5.27. In order for the integrals to be de�ned and

to have practical use, the 2D image functions f(x; y) and h(x; y) should have zero values

outside of some �nite rectangle in the xy�plane and have �nite volume under their surface.

For �ltering, kernel function h(x; y) will often be zero outside some rectangle that is much

smaller than the rectangle that supports f(x; y). For a global analysis of the spatial fre-

quency of f , the rectangle supporting h will include all of the support of f . More details are

given in the optional section of Fourier analysis below. Figure 5.34 shows an interpretation

of steps in computing the value of g(x) from the two functions being convolved in the case of

1D signals. Kernel function h(x) is �rst ipped about the origin and then translated to the

point x at which g(x) is being computed. g(x) is then computed by integrating the products

of the input function f(x0) times the relocated kernel h(x0 � x); since, that function is zero

outside of the interval [a; b], integration can be con�ned to this �nite interval. Convolution

is easily carried out with digital images by using discrete sums of products instead of the

continuous integrals de�ned above.

Cross correlation translates the mask or kernel directly to the image point [x; y] with-

out ipping it; otherwise it is the same operation used in convolution. Conceptually, it is

easier not to have to think of ipping the kernel, but rather just placing it at some image

location. If the kernel is symmetric so that the ipped kernel is the same as the original

kernel, then the results of convolution and correlation will be identical. While this is the

case for smoothing masks and other isotropic operators, many edge detection masks are
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Exercise 25 Rectangle detection

Use the corner detection procedure of the previous exercise to implement a program that

detects rectangles in an image. (Rectangle sides are assumed to align with the sides of

the image.) The �rst step should detect candidate rectangle corners. A second step should

extract subsets of four candidate corners that form a proper rectangle according to geometric

constraints. An optional third step might further check the four corners to make sure that

the intensity within the candidate rectangle is uniform and contrasting with the backgorund.

What is the expected behavior of your program if it is given a noisy checkerboard image?

Test your program on a noisy checkerboard, such as in Figure 5.7 and an image of a building

with rectangular windows, such as in Figure 5.42.

x x

x

h ( x ) h ( - x )

a b

x’

x’

f ( x )

0.5

-0.5 0.5 x

h ( x’ - x )

h ( x’ - x )

g ( x ) =      f ( x’ ) h ( x’ - x ) dx’

a

b

Figure 5.34: Computing convolution g(x) of signal f(x) with kernel h(x) denoted g(x) =

f(x) ? h(x). For any domain point x, kernel h is ipped and then translated to x; then,

g(x) is computed by summing all the products of f(x) and the values of the ipped and

translated h.

x

y

image F[x, y]

H[ 0, 0 ]

G[x, y] = F[x, y]  x  H[x, y]

x

y

[x, y]

H[ -w/2, -h/2 ]
[ x -w/2 , y -h/2 ]

[ x + w/2 , y + h/2 ]

mask  H[x, y]

H[w/2, h/2]

Figure 5.35: Computing the cross correlation G[x; y] of image F [x; y] with mask H[x; y]:

G[x; y] = F [x; y]
H[x; y]. To compute G[x; y], the maskH[x; y] is centered on input image

point F [x; y] to sum all the products of image values of F and the corresponding overlaid

weights of H.
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Cross correlation with a LOG mask produces zero-crossings at boundaries.
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Cross correlation with column derivative mask detects column boundaries.
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Cross correlation with row derivative mask detects column boundaries.

Figure 5.36: Cross correlation of an image with various masks to enhance regions boundaries:

(top) second derivative operator produces a zero-crossing at boundaries; (center) column ( x

) derivative operator detects changes across columns; (right) column ( y ) derivative operator

detects changes across rows.
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asymmetric. Despite the formal di�erence between convolution and cross correlation, those

who do image processing often loosely refer to either operation as \convolution" because

of their similarity. The many masks used in this chapter, and others, have been presented

assuming that they would not be ipped before being applied to an image. Normalized cross
correlation will normalize by dividing G[x; y] by the magnitudes of both F [x; y] and H[x; y]

so that the result can be interpreted as a result of matching the structure of F with the

structure ofH that is independent of scale factors, as has been discussed in previous sections.

Exercise 26

Given H =

1 0 -3

0 4 0

-3 0 1

and F =

5 5 5 5 5 5

5 5 5 5 8 8

5 5 5 8 8 8

5 5 8 8 8 8

8 8 8 8 8 8

,

compute G = F 
H.

Exercise 27 Point spread

Given kernel H =

1 2 1

2 5 2

1 2 1

, what is the result of convolving it with an image F [x; y]

which has F [x0; y0] = 1 and all other pixels 0?

Exercise 28

Suppose that function h(x) takes value 1 for �1=2 � x � 1=2 and is zero elsewhere, and

suppose that function f(x) takes value 1 for 10 � x � 20 and zero elsewhere. (a) Sketch

the two functions f and h. (b) Compute and sketch the function g(x) = f(x) ? h(x). (c)

Compute and sketch the function g(x) = h(x) ? h(x).

5.10.3 Possible parallel implementations

One can see from the de�nition of convolution, that g(x1; y1) can be computed indepen-

dently of g(x2; y2); in fact, all the integrations can be done at the same time in parallel.

Also, each integration computing an individual value g(x; y) can form all of the products

simultaneously, enabling a highly parallel system. Various computer architectures can be

envisioned to perform all or some operations in parallel.

5.11 *Analysis of spatial frequency using sinusoids

Fourier analysis is very important in signal processing; its theory and practice �lls many

books. We give only a brief snapshot here, building on the notions of a vector space already

introduced.
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Exercise 29
The pointilist school of painters created their paintings by dabbing their paintbrush per-

pendicularly on the canvas and creating one dab/point of color at a time. Each dab is

similar to a single pixel in a digital image. The human viewer of the artwork would stand

back and a smooth picture would be perceived. Implement a program to do pointilist art.

The program should present a palette of colors and some other options, such as choosing

paintbrush size or whether '+' or 'XOR' would be used for dabbing, etc. When your pro-

gram is working, create a painting of a starry night. Your program should work with an

external �le representing the painting in progress so that a user could save the session for

later continuation.

Exercise 30
Implement a program to convolve a mask with an image. The program should read both

the image and mask from input �les in the same format. Perhaps you can test it on the

artwork produced by the program from the previous exercise.

Exercise 31

Suppose in the search for extra terrestrial intelligence (SETI) deep space is scanned with

the hope that interesting signals would be found. Suppose signal S is a concatenation of

the �rst 100 prime numbers in binary form and that R is some received signal that is much

longer than S. Assume that R has noise and has real valued coordinates. To �nd if S is

embedded in R, would cross correlation or normalized cross correlation work? Why?
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Figure 5.37: (Top row) Three sinusoids, 100cos(2� 3x
512

), 30cos(2� 16x
512

) and 20cos(2� 30x
512

);

(bottom row left) sum of all three and (bottom row right) sum of �rst two.
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Figure 5.38: Di�erent sinusoidal picture functions in the spatial domain [x; y]: The top left

image was generated by the formula 100cos(2�(16x=512))+100 and has 16 cycles along the

x-axis. The bottom right image was generated by the formula 100cos(2�(12y=512)) + 100

and has 12 cycles along the y-axis. The bottom left image was generated by the formula

100cos(2�(16x=512 + 12y=512)) + 100: note how the waves of the bottom left image align

with those of the top left and bottom right. The Fourier power spectrum is shown at the

top right.

The mathematician Fourier imagined the surface of the sea as a sum of sine waves. Large

waves caused by the tide or ships had long wavelengths (low frequency), while smaller waves

caused by the wind or dropped objects, etc. had short wavelengths (high frequency). The

top row of Figure 5.37 shows three pure waves of 3, 16, and 30 cycles across a 1D space

of x 2 [0; 512]: in the bottom row are two functions, one which sums all three waves and

one which sums only the �rst two. Similar sets of waves can be used to create 2D picture

functions or even 3D density functions.

The Fourier theory in analysis shows how most real surfaces or real functions can be

represented in terms of a basis of sinusoids. The energy along the basis vectors can be

interpreted in terms of the structure of the represented surface (function). This is most

useful when the surface has repetitive patterns across large regions of the surface; such as

do city blocks of an aerial image of an urban area, waves on a large body of water, or the

texture of a large forest or farm �eld. The idea is to expand the entire image, or various

windows of it, using a Fourier basis and then �lter the image or make decisions about it

based on the image energy along various basis vectors. For example, high frequency noise

can be removed by subtracting from the image all the components along high frequency

sine/cosine waves. Equivalently, we can reconstruct our spatial image by adding up only

the low frequency waves and ignoring the high frequency waves.
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Figure 5.39: A picture function formed by the sum I[x; y] = 100Ei + 30Ej + 10Ek where

Ei is as in the bottom right of Figure 5.38, Ej is as in the top left, and Ek is as in the

bottom left. (Perhaps it models an orchard or foam padding?)

5.11.1 A Fourier Basis

For an intuitive introduction, let us assume an orthonormal set of sinusoidal basis images

(or picture functions) Ek � Eu;v(x; y). Presently, k and u; v are integers which de�ne

a �nite set of basis vectors. It will soon become clear how parameters u; v determine the

basis vectors, but right now, we'll use the single index k to keep our focus on the funda-

mental concept. The bottom row of Figure 5.37 shows two signals formed by summing

three or two of the pure cosine waves shown in the top row of the �gure. More complex

functions can be created by using more pure cosine waves. Figure 5.39 shows the result of

summing scaled versions of the three \pure" waves in Figure 5.38 to create a new picture

function. By using the Fourier basis functions Ek, any picture function can be represented

as I[x; y] =
PN�1

k=0 akEk[x; y]. As in previous sections, ak is a measure of the similarity

between I[x; y] and Ek[x; y] and the energy of image I[x; y] along that particular compo-

nent wave. Useful image processing operations can be done by operating on the values of ak
rather than on the individual intensities I[x; y]. Three major operations are described below.

Important image processing operations using the Fourier basis:

1. The Fourier basis can be used to remove high frequency noise from the image

or signal. The signal f is represented as
P

k akEk. The values of ak for the high

frequency sinusoids Ek are set to zero and a new signal f̂ is computed by summing

the remaining basis functions with ak 6= 0.

2. The Fourier basis can be used to extract texture features that can be used to

classify the type of object in an image region. After representing the image, or image

region, in the Fourier basis, various ak can be used to compute features to be used

for the classi�cation decision. Regions of waves on water or crops organized by rows

are amenable to such a process. The ak are useful for determining both the frequency

and direction of textured regions.

3. The Fourier basis can also be used for image compression. A sender can send a

subset of the ak and a receiver can reconstruct the approximate picture by summing

the known sinusoidal components. All of the ak can be transmitted, if needed, in either
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order of energy, or in order of frequency: the receiver can terminate the transmission

at any time based on the content received up to that point.

Our goal here is to produce a useful basis of picture functions and an understanding

of how to use it in practice. Some important mathematical background using continuous

functions is needed. For this development, lets assume that the origin of our coordinate

system is at the center of our picture function, which is de�ned for a square region of the

xy-plane. When we proceed to a digital version, the picture will be represented by digital

image I[x; y] with N2 samples. First, we establish a set of sinusoids of di�erent frequency

as an orthogonal basis for continuous signals f . If m;n are any two di�erent integers,

then the two cosine waves with these frequency parameters are orthogonal over the interval

[��; �]. The reader should work through the following exercises to verify that the function

set f1; sin(mx); cos(nx); : : :g is an orthogonal set of functions on [��; �]. The orthogonality
of the cosine waves follows from Equation 5.28, since sin(k�) = 0 for all integers k.

Z �

��
cos(m�)cos(n�)d� =

sin(m � n)�

2(m� n)
+
sin(m + n)(��)

2(m+ n)

= 0 for m2 6= n2

(5.28)

N symmetrically spaced samples of these cosine functions will create a set of vectors

that will be orthogonal in the sense de�ned previously by the dot product.

Exercise 32

Consider the set of all continuous functions f de�ned on the interval x 2 [x1; x2]. Show

that this set of functions f; g; h; : : :, together with scalars a; b; c; : : : forms a vector space by

arguing that the following properties hold.

f � g = g � f (f � g)� h = f � (g � h)

c(f � g) = cf � cg (a+ b)f = af � bf

(ab)f = a(bf) 1f = f

0f = 0

5.11.2 2D Picture Functions

21 Definition The complex valued picture function

Eu;v(x; y) � e�j 2�(ux+vy)

= cos(2�(ux+ vy)) � jsin(2�(ux + vy))

(5.30)

where u and v are spatial frequency parameters as shown in Figure 5.38 and j =
p
�1.

Using a complex value is a convenience that allows us to separately account for both a

cosine and sine wave of the same frequency: the sine wave has the same structure as the
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Exercise 33

For the space of continuous functions of x 2 [x1; x2], as in the exercise above, de�ne a dot

product and corresponding norm as follows.

f � g =

Z b

a

f(x)g(x)dx ; kfk =
p
f � f (5.29)

Argue why the following four properties of a dot product hold.

(f � g) � h = (f � g) + (g � h)
f � f � 0

f � f = 0() f = 0

f � g = g � f
(cf) � g = c(f � g)

Exercise 34 Odd and even functions

A function is an even function i� f(�x) = f(x) and a function is an odd function if f(�x) =
�f(x). (a) Show that cos(mx) is an even function and that sin(nx) is an odd function,

where m;n are nonzero integers. (b) Let f and g be odd and even continuous functions on

[�L;L], respectively. Argue that
R L
�L f(x)g(x)dx = 0.

Exercise 35
Using the de�nition of the dot product given in Exercise 33 above, show that the set of

sinusoidal functions fk de�ned below are orthogonal on the interval [��; �].
f0(x) = 1; f1(x) = sin(x); f2(x) = cos(x); f3(x) = sin(2x); f4(x) = cos(2x); f5(x) =

sin(3x); f6(x) = cos(3x); : : :
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cosine wave but is 1/4 wavelength out of phase with the cosine wave. When one of these

basis functions correlates highly with a picture function, it means that the picture function

has high energy in frequency u; v. The Fourier transform, converts a picture function into

an array of these correlations. We start with the integral form and then give the discrete

summation for digital images below.

22 Definition The 2D Fourier Transform transforms a spatial function f(x; y) into the
u; v frequency domain.

F (u; v) �
Z 1

�1

Z 1

�1
f(x; y)Eu;v(x; y)dxdy

=

Z 1

�1

Z 1

�1
f(x; y)e�j 2�(ux+vy)dxdy

(5.31)

The function f must be well-behaved; speci�cally, picture functions have the following

properties which make the above formula well-de�ned.R1
�1
R1
�1 j f(x; y) jdxdy is �nite; moreover, f(x; y) = 0 outside of some rectangle R so the

in�nite limits in the formula can be replaced by the limits of R. Also, f has a �nite number

of extrema and no in�nite discontinuities in R.

Exercise 36

What is the special meaning of F (0; 0), where F (u; v) is the Fourier transform of picture

function f(x; y)?

Often, we want to work with the power spectrum, which combines energy from sine and

cosine waves of the same frequency components u; v. A power spectrum is shown at the top

right of Figure 5.38.

23 Definition The Fourier power spectrum is computed as

P (u; v) � ( Real(F (u; v))
2
+ Imaginary(F (u; v))

2
)1=2 (5.32)

Figure 5.40 shows how the actual wavelength of a 2D sinusoid relates to the wavelengths

projected along each axis. u is the frequency along the X-axis in cycles per unit length and

1=u is the wavelength. v is the frequency along the Y -axis and 1=v is the wavelength. � is

the wavelength of the sinusoid along its natural axis, or direction of travel. By computing

the area of the triangle shown at the right in Figure 5.40 in two di�erent ways, we obtain

the following formula which will help us interpret what the power spectrum tells us about

the frequency content of the original image.

�
p
(1=u)2 + (1=v)2 = (1=u)(1=v)

� =
1p

u2 + v2
(5.33)

Let's assume that the both the width and height of our picture have length 1. In

Figure 5.38 there are u = 16 cycles across the width of the picture, so the wavelength is

1=u = 1=16. Similarly, we have 1=v = 1=12. Applying the formula in Equation 5.33, we

obtain � = 1=20. By counting the number of waves in Figure 5.38 at the bottom left, we see
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Figure 5.40: Relationships among the wavelengths 1=u0 and 1=v0 of a sinusoid intercepted

by the X and Y axes and the wavelength � of the 2D wave.
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Figure 5.41: (Top row) three sinusoidal waves and (bottom row) their principle response in

the power spectrum.
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Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum

of the brick texture shows energy in many sinusoids of many frequencies, but the dominant

direction is perpendicular to the 6 dark seams running about 45 degrees with the X-axis.

There is noticable energy at 0 degrees with the X axis, due to the several short vertical

seams. The power spectrum of the building shows high frequency energy in waves along

the X-direction and the Y -direction. The third image is an aerial image of an orchard:

the power spectrum shows the rows and columns of the orchard and also the \diagnonal

rows". The far right image, taken from a phone book, shows high frequency power at about

60o with the X-axis, which represents the texture in the lines of text. Energy is spread

more broadly in the perpendicular direction also in order to model the characters and their

spacing.

27 waves across the 1.4 unit diagonal, yielding the expected frequency 27=1:4 � 20 along

the actual direction of the 2D wave.

Figure 5.41 shows the principle response in the power spectrum of the three sinusoidal

picture functions originally shown in Figure 5.38. The power spectrum at the top right of

Figure 5.38 actually shows heavy responses at three points, not just one. First of all, note

that F (0; 0) is just the total energy in f(x; y); since each sinusoid of Figure 5.38 has mean

of 100 and not 0, they have signi�cant average energy at zero frequency. Secondly, it is

evident from the de�ntion that P (�u;�v) = P (u; v), so the power spectrum is symmetric

about the origin u = 0; v = 0. Figure 5.42 shows the power spectrums of four real images.

The power spectrum need not be interpreted as an image, but rather as a 2D display

of the power in the original image versus the frequency parameters u and v. In fact, a

transform can be computed via optics, and thus it can be realized as a physical image.

In Chapter 2, there was brief mention of a sensor array partitioned into sectors and rings

(refer back to the \ROSA" con�guration in the relevant �gure from Chapter 2). Since the

power spectrum is symmetrical about the x-axis, as shown in Figure 5.42, the sectors can

be used to sample directional power, while the rings sample frequency bands without regard

to direction. Such sampling can also be done in software. In any case, if nr rings and ns
sectors are sampled, one obtains nr +ns features that may be useful for classi�cation of the

image neighborhood from which they were obtained.
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5.11.3 Discrete Fourier Transform

The discrete Fourier transform, or DFT, which is immediately applicable to digital images

is de�ned in Equation 5.34. We already know that a basis for the set of N �N images with

real intensity values must have N2 basis vectors. Each of these is determined by a pair of

frequency parameters u; v which range from 0 to N � 1 as used in the formulas below.

24 Definition The Discrete Fourier Transform (DFT) transforms an image of N �
N spatial samples I[x; y] into an N � N array F [u; v] of coe�cents used in its frequency
reresentation.

F [u; v] � 1

N

N�1X
x=0

N�1X
y=0

I[x; y]e
�2� j

N
(xu+yv) (5.34)

To compute the single frequency domain element (\pixel") F [u; v], we just compute the

dot product between the entire image I[x; y] and a \mask" Eu;v[x; y], which is usually not

actually created, but computed implicitly in terms of u; v and the cos and sin functions as

needed. We also de�ne an inverse transform to transform a frequency domain representation

F [u; v] into a spatial image I[x; y]. Although it is useful to display the transform F as a 2D

image, it might be less confusing to insist that it is NOT really an image. We have used the

formal term frequency representation instead.

25 Definition The Inverse Discrete Fourier Transform(IDFT) transforms an N�N
frequency representation F [u; v] into an N � N image I[x; y] of spatial samples.

I[x; y] � 1

N

N�1X
u=0

N�1X
v=0

F [u; v]e
+2� j

N
(ux+vy) (5.35)

If F [x; y] was computed by \forward" transforming I[x; y] in the �rst place, we want

the inverse transform to return to that original image. This property does hold for the

pair of de�nitions given above: proof is left to the guided exercises below. We �rst focus

the discussion on the practical use of the DFT & IDFT. For storage or communication

of an image, it might be useful to transform it into its frequency representation; the input

image can be recovered by using the inverse transform. In image processing, it is common to

perform some enhancement operation on the frequency representation before transforming

back to recover the spatial image. For example, high frequencies can be reduced or even

removed by reducing, or zeroing, the elements of F [u; v] that represent high frequency waves.

The convolution theorem below gives an elegant theoretical interpretation of this intuitive

process.

Exercise 37 Some basics about complex numbers

Use the de�nition ej! = cos ! + j sin !. (a) Show that (ej!)n = cos(n!) + j sin(n!).

(b) Show that x = ej
2�k
N is a solution to the equation xN � 1 = 0 for k = 0; 1; : : : ; N � 1.

(c) Let x0 = 1 = ej
2�0
N ; : : : ; xk = ej

2�k
N be the N roots of the equation xN � 1 = 0. Show

that x1 + x2 + x3 + : : :+ xN�1 = 0.
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Exercise 38 Proof of invertability of DFT/IDFT transforms

We want to prove that substituting the F [u; v] fromEquation 5.34 into Equation 5.35 returns

the exact original value I[x; y]. Consider the following summation, where x; y; s; t are integer

parameters in the range [0; N � 1] as used in the transform de�nitions:

G(x; y; s; t) =

N�1X
u=0

N�1X
v=0

e
j 2�
N

((x�s)u + (y�t)v):

(a) Show that if s = x and t = y, then G(x; y; s; t) =
PN�1

u=0

PN�1
v=0 1 = N2. (b) Show that

if s 6= x or t 6= y then G(x; y; s; t) = 0.

(c) Now show the major result that the inverse transform applied to the transform returns

the original image.

u

keep

remove

reduce  or

keepkeep

v

reduce/remove reduce/remove

high  pass bandpasslow  pass

I [ x, y ] I’[x, y ]F[u, v] F’[u, v]
F * F-1

Figure 5.43: Bandpass �ltering can be performed by a Fourier transformation into the

frequency domain (F[u;v]) followed by multiplication (*) by a bandpass �lter. The mul-

tiplication can set the \coe�cients" u; v of various frequencies to zero, as shown in the

top row. This modi�ed frequency representation is then inverse transformed to obtain the

modi�ed spatial image I0[x;y].
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5.11.4 Bandpass Filtering

Bandpass �ltering is a common image processing operation performed in the frequency do-

main and is sketched in Figure 5.43. The DFT is used to transform the image into its

frequency representation where the coe�cients for some frequencies are reduced, perhaps

to zero, while others are preserved. A sketch of the low pass �lter is given at the left of

Figure 5.43; intuitively, the high frequencies are erased and then the altered frequency rep-

resentation is inverse transformed via Equation 5.35 to obtain a smoothed version of the

original image. Instead of erasing elements of the frequency representation, we can take the

dot product of F [u; v] with a 2D Gaussian, which will weight the low frequency components

high and weight the high frequency components low. Figure 5.43 also shows how the fre-

quency representation would be altered to accomplish high pass and bandpass �ltering. The

theory of convolution below provides more insight to these operations.

5.11.5 Discussion of the Fourier Transform

The Fast Fourier Transform saves computational time by sharing common operations for

di�erent pairs of u; v and is usually used on square images of size 2m � 2m. Despite its

common use in image processing, the Fourier Transform can cause unwanted degradation

in local features of images because it is a global transform that uses all image pixels in

every computation of F [u; v]. For example, to represent hair or grass, or some other �ne

feature, high frequency waves must be used. First, such high frequencies might be �ltered

out as noise; however, even if not �ltered out, a high frequency response F [uh; vh] would

be computed by the dot product of a high frequency wave with the entire image. Since the

region of hair or grass would only be a small part of the entire image, the value of the dot

product could be high or low, depending on the rest of the image content. In the last ten

years, there has been a strong movement toward using wavelets instead of image-size waves.

Wavelets allow more sensitivity to local image variation, yet retain some major advantages

of using global sinusoids. JPEG and other picture compression schemes use cosine wave

representations on subimages to reduce the data size. Sometimes such compression must be

suppressed in order to preserve needed local image detail.

5.11.6 *The Convolution Theorem

In this section, we sketch a proof of the important convolution theorem , which tells us that

convolution of two functions in the spatial domain is equivalent to pointwise multiplication

of their frequency representations. This equivalence has great practical utility as has already

been seen.

Convolution Theorem:

If f(x; y) and h(x; y) are well-behaved functions of spatial parameters x; y, then F(f(x; y)?

h(x; y)) � F((f ?h)(x; y)) = F(f(x; y))F(h(x; y)) = F(u; v)H(u; v), where F is the Fourier

transform operator and ? is the convolution operator.

Before sketching a proof in the 1D case, we make the interpretation that is commonly

used in signal processing: convolution can be carried out without applying a mask h(x; y)

to all points of an image f(x; y).
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Filter image f(x; y) with mask h(x; y)

(1) Fourier transform the image f(x; y) to obtain its frequency rep. F (u; v).

(2) Fourier transform the mask h(x; y) to obtain its frequency rep. H(u; v)

(3) multiply F (u; v) and H(u; v) pointwise to obtain F 0(u; v)
(4) apply the inverse Fourier transform to F 0(u; v) to obtain the �ltered image f 0(x; y).

Algorithm 3: Filtering image f(x; y) with mask h(x; y) using the Fourier transform

For commonly used �lters h, the transform H is likely to be available either in closed

functional form or as a stored array in memory, thus short cutting step (2). Signal process-

ing texts typically contain a table of transform pairs < h;H > described both graphically

and in functional form so that the user can select a �lter with appropriate properties. We

now sketch a proof of the convolution theorem for the 1D case; these same steps can be

followed for the 2D case. An intermediate step is to show what happens to the transform

when the function is shifted.

Shift Theorem: F(f(x � x0)) = e�j 2�ux0F(f(x))

By de�nition F(f(x � x0)) �
R +1
�1 f(x � x0)e

�j 2�uxdx.

Making the change of variable x0 = x� x0, we obtain

F(f(x � x0)) =

Z +1

�1
f(x0)e�j 2�u(x0+x0)dx0 (5.36)

=

Z +1

�1
e�j 2�ux0f(x0)e�j 2�ux0dx0

= e�j 2�ux0F(f(x));

since the �rst factor is constant with respect to the variable of integration x0. Note that

j e�j 2�ux0 j2 = cos2(2�ux0) + sin2(2�ux0) = 1; (5.37)

so shifting the function does not change the energy of f(x) or F(u).

We can now use the above result to sketch the proof of the convolution theorem.

F((f ? h)(x)) �
Z x=+1

x=�1
(

Z t=+1

t=�1
f(t)h(x � t)dt)e�j 2�uxdx: (5.38)

Using the good behavior assumed for functions f and h allows the order of integration to

be interchanged.

F((f ? h)(x)) =

Z t=+1

t=�1
f(t) (

Z x=+1

x=�1
h(x� t)e�j 2�uxdx) dt (5.39)

Using the shift theorem,Z x=+1

x=�1
h(x� t)e�j 2�uxdx = e�j 2�utH(u); (5.40)
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where H(u) is the Fourier transform of h(x). We now have that

F((f ? h)(x)) =

Z t=+1

t=�1
f(t)(e�j 2�utH(u)) dt

= H(u)

Z t=+1

t=�1
f(t)e�j 2�ut dt

= H(u)F(u) = F(u)H(u) (5.41)

and the theorem is proved for the 1D case.

Exercise 39
Follow the steps given above for proving the Shift Theorem and Convolution Theorem in

the 1D case and extend them to the 2D case.

5.12 Summary and Discussion

This was a long chapter covering several methods and many examples: it is important to

review major concepts. Methods were presented to enhance appearance of images for either

human consumption or for automatic processing. A few methods were given for remapping

intensity levels to enhance the appearance scene objects; it was shown that often some image

regions were improved at the expense of degrading others. The methods were presented only

for grey level images; however, most can be extended to color images, as you may already

know from using some image enhancing tool. Edge enhancement was also presented as a

method for human consumption. Hopefully, the artists toolbox has been expanded.

The most important concept of the chapter is that of using a mask or kernel to de�ne a

local structure to be applied throughout the image. Convolution and cross correlation are

two very powerful and related techniques which compute a result at I[x; y] by taking the

sum of the pointwise products of the input image intensity and a corresponding mask value.

These are linear operations that are pervasive in both theory and practice. Within this

context, it was shown that the response to a particular mask at a particular image point

(the correlation) is a measure of how similar the structure of the mask is to the structure of

the image neighborhood. This notion provides a practical method for designing masks, or

�lters, for a variety of tasks, such as smoothing, edge detection, corner detection, or even

texture detection.

There is a large literature on edge detection, and several di�erent schemes were covered

in this chapter. It should be clear that specifc edge detector output can be very useful for

particular machine vision tasks. The dream of many developers has not been realized, how-

ever | to produce a single uniform solution to the low level vision problem of representing

signi�cant object boundaries by some description based on detected edges. Perhaps it is

unrealistic to expect this. After all, given an image of a car, how does the low level system

know whether or not a car is present, is of interest, is moving or still, or whether we are

interested in inspecting for scratches in its paint or the �t of its doors versus just recog-

nizing the make? Many of the edgemaps extracted in our examples seemed very promising

for various applications. Indeed they are { many methods of subsequent chapters will be

based on representations built using edge input. The reader should not be overly optimistic,

however, because the reader has interpeted the images of this chapter using much higher
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level organization and knowledge of objects and the world. The higher level methods that

we develop must be tolerant, because our edgemaps have gaps, noise, and multiple levels of

structure, which will challenge the algorithms that build from them.

5.13 References

Because few of the modern specialized journals existed when early work on image processing

and computer vision was done, research papers are scattered across many di�erent journals.

Larry Roberts published his seminal thesis work in recognition of 3D block-world objects in

1965. Part of that work was the detection of edges using the operator which now bears his

name. Roberts could not have anticipated the large amount of edge detection work which

would soon follow. Other early work was published by Prewitt in 1970 and Kirsch in 1971.

The Kirsch masks are now regarded as corner detectors rather than edge detectors. Recent

work by Shin et al (1998) supports the current popularity of the Canny step edge detector

(1986) by showing that it is one of the best in both performance and e�ciency, at least

in a structure-from-motion task. The paper by Huertas and Medioni (1986) takes a deep

practical look at implementing LOG �lters and shows how to use them to locate edges to

subpixel accuracy. The work on edge detection can easily be extended to 3D volume images

as has been done by Zucker and Hummel (1981).

The book by Kreider et al (1966) gives required linear algebra background focused on

its use in the analysis of functions, such as our picture functions: chapters 1,2 and 7 are

most relevant. Chapters 9 and 10 give background on Fourier series approximation of 1D

signals and are useful background for those wanting to explore the use of Fourier analysis

of 2D picture functions. One can consult the optics text by Hecht and Lajac (1974) for

Fourier interpretations of images as a superposition of waves. The book on algorithms by

Cormen et al (1990) gives two algorithms for selecting the i-th smallest of n numbers: the

theoretical bound on one of them is O(n) e�ort, which puts median �ltering in the same

theoretical complexity class as boxcar �ltering.
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